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Abstract

(Semi-)Riemannian geometry and partial di�erential equations (PDEs) are
the mathematical theory underlying most of modern physics, and in par-
ticular the theory of General relativity. This paper is a brief introduction
to the concepts of di�erential geometry and elliptic partial di�erential equa-
tions, with an example application to Plateau's problem in minimal surfaces;
though many of the same techniques have more recently been applied to prob-
lems related to general relativity. The �rst section is a primer for di�erential
geometry, the theory of general spaces where the concept of di�erentiation
can be de�ned. Next we discuss the theory of PDEs, which arise frequently in
di�erential geometry and applications. We approach PDEs via the calculus
of variations, including a discussion of the Euler-Lagrange equations for an
action and the direct method for proof of the existence of a weak solution.
While our exposition only covers Laplace's equation, the same methods ex-
tend to a wide class of PDEs. We brie�y touch on the theory of regularity
for elliptic PDEs. Finally, all this machinery is applied to the solution of
Plateau's problem.
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1 Smooth Manifolds

Smooth manifolds are a generalisation of Euclidean space that retain the concepts of di�erentiability
and vector �elds. We start with a topological space, and then make local identi�cations with Rn
that we use to de�ne di�erentiation. These local identi�cations are just coordinate systems, known as
charts.

1.1 The basics

De�nition 1. An m-dimensional chart on a topological space M is a homeomorphism ξ from an
open subset of M to an open subset of Rm. The term �chart� will sometimes be used to refer to the
image in Rm when this is not ambiguous.

A smooth atlas A on M is a collection of charts on M such that every point in M is in the domain
of at least one chart in A , and for every pair ξ, η of charts in A with overlapping domains, the map
ξ ◦ η−1 is smooth (as a function between subsets of Rm).

A smooth atlas A on M is complete or maximal if there is no larger atlas B ) A .
An m-dimensional manifold (or m-manifold) (M,A ) is a topological space M equipped with a

complete atlas A of m-dimensional charts.

Any atlas has a unique extension to a complete atlas (order the set of all atlases on M by inclusion
and apply Zorn's lemma).

De�nition 2. A function f : M → R is smooth if for every point p ∈ M , there is a chart ξ with
domain U 3 p such that f ◦ ξ−1 is smooth.

U
f
//

ξ

��

R

Rm
f◦ξ−1

==

The set of all smooth functions on M is denoted by F (M) or C∞ (M), and is an associative
R-algebra under the obvious operations of pointwise addition, scalar multiplication and pointwise
multiplication.

A function f : M → N is smooth if for every point p ∈M there is a chart ξ on U 3 p and a chart
η on V 3 f (p) such that η ◦ f ◦ ξ−1 is smooth.

U
f
//

ξ

��

V

η

��
Rm

η◦f◦ξ−1

// Rn

A bijection f between manifolds is a diffeomorphism if both f and f−1 are smooth. If R is considered
as a manifold (with the identity map as a global chart) then these two notions of smoothness agree.

1.2 Vectors and Vector Fields

De�nition 3. A derivation on an R-algebra A is an R-linear map D : A → A such that D (ab) =
aDb+ bDa.

The requirement of the Leibniz product rule means derivations are like di�erential operators; the
one-dimensional derivative is a derivation on the algebra of smooth functions R→ R.
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De�nition 4. A tangent vector at p ∈ M is an R-linear function v : F (M) → R such that
v (fg) = f (p) vg + g (p) vf. The space of all tangent vectors at p is denoted by TpM and is called the
tangent space. The tangent space is an m-dimensional vector space, with basis{

∂i|p ≡
∂

∂xi
|p : i ∈ {1 . . . n}

}
where the basis vectors are de�ned by

∂

∂xi
|pφ = ∂i

(
φ ◦ ξ−1

)
(ξ (p))

where the ∂i is the usual partial derviative of functions on Rn. The dual basis to {∂i} (which spans
the cotangent space T ∗pM = (TpM)

∗
) is denoted by

{
dxi
}
, and the components of v ∈ TpM in the

co-ordinate system ξ are vi = dxi (v).

De�nition 5. The tangent bundle is the �bre bundle formed by all the tangent spaces TM =⊔
p∈M TpM , and is a 2m-dimensional manifold when equipped with charts

ξ∗ (p, v) =
(
x1 (p) . . . xm (p) , v1 . . . vm

)
for charts ξ =

(
x1 . . . xm

)
on M . The projection from a vector to its base point will be denoted by

π : TM →M .
A vector field is a smooth section of the tangent bundle; i.e. a smooth function X : M → TM

such that π ◦ X = id. A vector �eld can also be thought of as an operator on F (M), by applying
pointwise: (Xf) (p) = Xpf (p). Vector �elds are derivations on F (M), and every derivation on
F (M) is a vector �eld. The space of vector �elds on M is denoted by X (M) or Γ (TM), and is an
F (M)-module (where (fX) (p) = f (p)Xp).

Similarly, a one-form is a smooth section of the cotangent bundle T ∗M =
⊔
p∈M T ∗pM ; the

space of one-forms on M is the F (M)-module X ∗ (M).
The co-ordinate vector �elds {∂i} are a basis for X (M) over F (M). Likewise, the one-forms

{dxi} are a basis for X ∗ (M) over F (M).
The Lie Bracket of two vector �elds X and Y is [X,Y ] = XY −Y X, where the juxtaposition of

vector �elds denotes composition of the corresponding derivations.

The differential at p ∈ M of a smooth map f ∈ F (M) is the cotangent vector (i.e. a linear
map dfp : TpM → R) given by dfp (v) = v (f). Likewise, the di�erential (or pushforward) at p ∈M
of a smooth map f : M → N is a linear map between tangent spaces dfp : TpM → Tf(p)N given by

∀φ ∈ F (N) dfp (v) (φ) = v (φ ◦ f) .

Bundling the di�erentials from all points in the manifold produces an R-linear map df between tangent
bundles; which in the case of N = R is a one-form. The di�erential distributes across function
composition; i.e. d (g ◦ f) = dg ◦ df .

M
f
// N

g
// Q

TM

πM

OO

df
//

d(g◦f)

99TN

πN

OO

dg
// TQ

πQ

OO

In terms of co-ordinates ξ =
(
x1 . . . xm

)
on M and η =

(
y1 . . . yn

)
on N , the pushforward of a vector

tangent to M is

df

(
vi

∂

∂xi

)
=

(
∂ϕj

∂xi
vi
)

∂

∂yi
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where ϕ is the map between charts corresponding to f .

M
f
//

ξ

��

N

η

��
Rm

ϕ
// Rn

We therefore see that the matrix representation of the di�erential is the familiar Jacobian matrix from
multivariable calculus.

De�nition 6. A curve in M is a smooth map γ : I →M , where I is an interval in the real line. The
velocity of γ at t (or at p = γ (t)) is the tangent vector γ̇ (t) ∈ TpM given by

γ̇ (t) = dγt

(
d

dt

)
where d/dt is the ordinary derivative operator on F (I), which is a vector tangent to I. This is
compatible with pushforwards in the sense that if χ = f◦γ is the pushforward of a curve via f : M → N ,
then χ̇ = df (γ̇).

De�nition 7. An integral curve of a vector �eld V ∈ X (M) is a curve γ in M such that
Vγ(t) = γ̇ (t); i.e. V restricted to the image of γ is simply the velocity vector �eld of γ. A vector �eld
V is complete if for every point p ∈ M there is an integral curve of V passing through p that is
de�ned on all of R.

The flow of a complete vector �eld V is the smooth map φV : M × R→ M given by φV (p, t) =
γV,p (t) where γV,p is the integral curve of V with γ (0) = p. For vector �elds with integral curves only
de�ned on t ∈ (−εp, εp), we can de�ne a local �ow where the domain of t is restricted based on p. We
usually write ΦVt (p) = φV (p, t) , so that ΦVt is a family of di�eomorphisms parametrised by t.

1.3 Tensors and Tensor Fields

De�nition 8. A tensor A of type (r, s) over an R-module V is a multilinear function

A : V ∗ × · · · × V ∗︸ ︷︷ ︸
r

×V × · · · × V︸ ︷︷ ︸
s

→ R.

The space of all (r, s)-tensors over V is denoted T rs V , and is itself an R-module under the obvious
componentwise operations; if V is free with dimension n, then T rs V has dimension nr+s. Some familiar
real tensor spaces are T 0

0 V = R, T 0
1 V = V ∗, T 1

0 V = V and T 1
1 V = L (V, V ).

The tensor product over V is a map ⊗ : T rs V × T r
′

s′ V → T r+r
′

s+s′ given by

(A⊗B)
(
θ1 . . . θr, ϑ1 . . . ϑr

′
, v1 . . . vs, w1 . . . ws′

)
= A

(
θ1 . . . θr, v1 . . . vs

)
B
(
ϑ1 . . . ϑr

′
, w1 . . . ws′

)
.

If V is a �nite-dimensional real vector space and e1 . . . en is a basis for V with dual basis θ1 . . . θn,
then {

ei1 ⊗ · · · ⊗ eir ⊗ θj1 ⊗ · · · ⊗ θjs : 1 ≤ ik ≤ n, 1 ≤ jk ≤ n
}

forms a basis for T rs V .
Tensors of type (r, 0) are called contravariant, and tensors of type (0, s) are covariant. Tensors

with r, s both non-zero are sometimes called mixed-type.
The wedge product over V is the antisymmetrisation of the tensor product on covariant tensors,

given by
A ∧B = A⊗B −B ⊗A.
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De�nition 9. The (r, s)-type Tensor Bundle over M is formed much the same way as the tangent
and cotangent bundles:

T rsM =
⊔
p∈M

T rs (TpM) .

T rsM is an m (1 + r + s)-dimensional manifold. An (r, s)-tensor �eld is a smooth section of T rsM ; the
space of all (r, s) tensor �elds on M is denoted T r

s M or Γ (T rsM). The space T r
s M is an F (M)-

module, and in fact it is exactly the tensor module T rs (X (M)); so instead of thinking about smooth
functions that are tensors over TpM at each point, one can equivalently think about single tensors over
the algebra X (M).

The bases we already have for X (M) and X ∗ (M) therefore give us a basis for T r
s (M):

T r
s (M) = spanF(M)

{
∂i1 ⊗ · · · ⊗ ∂ir ⊗ dxj1 ⊗ · · · ⊗ dxjs : 1 ≤ ik ≤ n, 1 ≤ jk ≤ n

}
De�nition 10. The pullback of a covariant tensor �eld A ∈ T 0

s (N) by the smooth function
f : M → N is the tensor �eld f∗A ∈ T 0

s (M) de�ned by

f∗A (X1, . . . , Xs) = A (df (X1) , . . . , df (Xs)) .

De�nition 11. A contraction is a F (M)-linear function Cij : T r
s → T r−1

s−1 given by

Cij

(
Ak1...krl1...ls

)
=

n∑
µ=1

A
k1...ki−1,µ,ki+1...kr
l1...lj−1,µ,lj+1...ls

where the basis vectors ∂k, dx
l have been omitted. Contractions of tensors are a very common opera-

tion, but are di�cult to convey clearly in coordinate-free notation; so we often use the index notation
(i.e. writing equations of tensors in terms of their components) and the Einstein summation convention
for contractions: whenever an index is repeated, once up and once down, it is implicitly summed over
{1 . . . n}. These components may be with respect to the coordinate frame {∂i} or alternatively with
repect to some more convenient basis {Ei} of vector �elds, known as a frame.

Some useful shortcuts in index notation are the symmetrisation

A(i1i2...in) :=
1

n!

∑
σ∈Sn

Aiσ1iσ2...iσn

and the antisymmetrisation

A[i1i2...in] :=
1

n!

∑
σ∈Sn

sgnσ ·Aiσ1iσ2...iσn

where Sn is the symmetric group of order n. We can decompose any contravariant or covariant tensor
into symmetric and antisymmetric parts.

-

De�nition 12. A Tensor Derivation D on a manifold M is a collection of maps

Dr
s : T r

s M → T r
s M

for every r, s ≥ 0 such that for any tensor �elds A,B on M , we have D (A⊗B) = DA⊗B +A⊗DB
and D (CA) = C (DA) for any contraction C. From this we see that we have a �product rule�

D
(
A
(
θ1, . . . , θr, X1 . . . , Xs

))
= (DA)

(
θ1, . . . , θr, X1, . . . , Xs

)
+

r∑
i=1

A
(
θ1, . . . , Dθi, . . . , θr, X1, . . . , Xs

)
+

s∑
i=1

A
(
θ1, . . . , θr, X1, . . . , DXi, . . . , Xs

)
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and so we can write DA in terms of D's action on functions and vector �elds alone. Given a vector
�eld V and an R-linear function δ : X (M) → X (M) such that δ (fX) = fδ (X) + (V f)X, one
can therefore use the conditions above to construct a unique tensor derivation such that D0

0 = V and
D1

0 = δ.

De�nition 13. The Lie Derivative L is the tensor derivation generated by the Lie bracket; i.e. the
unique tensor derivation satisfying

LXf = df, LXY = [X,Y ] .

An alternative characterisation of the Lie derivative is the rate of change of a tensor as one �ows
it along the given vector �eld:

LXA =
d

dt

∣∣∣
t=0

(
ΦXt
)∗
A. (1.1)

This formula is useful for computing the rate of change of integrals, where the pullback of tensor �elds
appears naturally via the change of variables formula.

1.4 Di�erential Forms and Integration

On open subsets of Rn, we have a natural notion of integration provided by the Lebesgue measure;
and similarly for surfaces we have the Hausdor� measure. We can generalise integration to smooth
manifolds, but we need some extra structure to do so. If we attempt to de�ne the integral viaˆ

Ω

f :=

ˆ
ξ(Ω)

f ◦ ξ−1 dx1 · · · dxn

for a chart ξ, we quickly see that this depends on the choice of chart (e.g. by simply scaling up the chart
image we would increase the integral). Therefore the natural things to integrate are not functions, but
objects that transform under pullbacks to cancel out the e�ect of changing the chart geometry (i.e.
scale with the Jacobian determinant). It turns out that these objects are the completely antisymmetric
covariant tensors, known as di�erential forms.

De�nition 14. A differential k-form (or just k-form) on M is an antisymmetric tensor �eld
ω ∈ T 0

k M ; i.e. ω(i1...in) = 0 or equivalently ω[i1...in] = ωi1...in .

The space of k-forms onM is denoted by Ωk (M). At each point p ∈M , the space of antisymmetric
tensors at p is witten Λk (TpM). It is not hard to show that Λk (TpM) has dimension

(
n
k

)
over R, so

Ωk (M) is a module of rank
(
n
k

)
over F (M). We write Ω (M) =

⋃n
k=0 Ωk (M) for the space of all

di�erential forms on M (where 0-forms are just smooth functions). The motivation for this de�nition
is that Λn (Rn) = span {det} where the determinant is considered as a function of n vectors in Rn
(either the rows or the columns of the usual matrix input).

We can now de�ne the integral of a di�erential form, using forms on Euclidean space as a starting
point and various desired properties to extend our de�nition to the general case. For an n-dimensional
manifold, the n-forms are a one-dimensional space with basis

{
dx1 ∧ dx2 ∧ · · · ∧ dxn

}
.

De�nition 15. The integral of a di�erential n-form ω = fdx1∧ · · ·∧dxn ∈ Ωn (Rn) over a an open
subset Ω of Euclidean n-space is given by

ˆ
Ω

fdx1 ∧ · · · ∧ dxn :=

ṅ

Ω

fdx1 · · · dxn (1.2)

where the integral on the right is the usual integral of functions on Rn and xµ is the usual Euclidean
coordinate system. We now require that the integral is invariant under pullbacks: for a smooth map
φ between manifolds, we require ˆ

φ(Ω)

ω =

ˆ
Ω

φ∗ω. (1.3)
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This is the change of variables formula in terms of di�erential forms. So now for any set Ω ⊂M
contained entirely within the domain of a chart ψ, we have

ˆ
Ω

ω =

ˆ
ψ(Ω)

(
ψ−1

)∗
ω (1.4)

where the integral on the right can be evaluated using Equation 1.2. For a general n-form ω ∈ Ωn (M)
with compact support, take a smooth partition of unity {χi, i ∈ I} such that for each i, suppχi ⊂ domψi
for some chart ψi. If we only require that the χi cover suppω then by compactness we can take I to
be �nite. Requiring linearity of the integral

ˆ
Ω

ω + θ =

ˆ
Ω

ω +

ˆ
Ω

θ (1.5)

then gives

ˆ
M

ω =

ˆ
M

∑
i∈I

χiω

=
∑
i∈I

ˆ
suppχi

χiω.

Each of the inner integrals is now of the form (1.4). For a k-dimensional submanifold N of M and a
k-form ω on M , we simply restrict ω to TN .

The above gives us a de�nition of integration that works for all compactly supported forms (or
alternatively allows us to integrate any form over a compact domain). All that one needs to remember
are Equations 1.2, 1.3 and 1.5.

De�nition 16. The exterior derivative is an R-linear map d : Ωk (M)→ Ωk+1 (M) de�ned by

d (f dz1 ∧ dz2 ∧ · · · ∧ dzk) = df ∧ dz1 ∧ dz2 ∧ · · · ∧ dzk

and extended by linearity, where z1 · · · zk are any smooth functions and df is the usual di�erential of
a function.

The Fundamental Theorem of Calculus, Divergence theorem, Green's theorem, etc are now all
uni�ed into the easily stated Stokes Theorem:

Theorem 1. Stokes Theorem [2]. For ω ∈ Ωn (M), and a region Ω ⊂M whose boundary ∂Ω is a
smooth submanifold, we have ˆ

Ω

dω =

ˆ
∂Ω

ω.

De�nition 17. For a vector �eld X and k-form ω, the interior product iXω is the (k − 1)-form
obtained by contraction:

iXω (Y1, . . . , Yk−1) = ω (X,Y1, . . . , Yk−1) .

The antisymmetry of di�erential forms implies that iX ◦ iY + iY ◦ iX = 0.

The Lie derivative, exterior derivative and interior product are related by Cartan's Magic Formula

LX = d ◦ iX + iX ◦ d.
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2 Riemannian Geometry

Riemannian geometry is the study of smooth manifolds that are equipped with the additional geometric
notions of distance and angle. These properties are encapsulated in a tensor �eld called the metric,
which is essentially a generalisation of the inner product to non-a�ne spaces. Since we no longer have
natural identi�cations between vectors based at di�erent points, we need a separate inner product for
each tangent space.

2.1 Riemannian Manifolds

De�nition 18. A Riemannian metric g on M is a symmetric tensor �eld from T 0
2 M that is

positive de�nite when considered as a bilinear form (that is, the eigenvalues of the corresponding map
in L (V, V ∗) given by v 7→ g (v, ·) are all positive). A Riemannian manifold is a pair (M, g) where g is
a Riemannian metric on the manifold M .

The Riemannian metric gives a canonical correspondence between covariant and contravariant
tensor indices. When tensor indices are raised or lowered from their usual position, contraction with
the metric is assumed, e.g. for a tensor R ∈ T 0

2 (M),

Rij = gikRkj .

De�nition 19. The canonical volume form dµ (also commonly dvol, dV , voln) on a Riemannian
n-manifold (M, g) is the n-form de�ned by

dµ (v1 · · · vn) =
√

det
ij
g (vi, vj)

and in coordinates has the form

dµ =
√

det g dx1 ∧ · · · ∧ dxn.

On Euclidean space, integration with repect to the canonical volume form agrees with the usual
integration, hence the notation dµ. This volume form gives us a natural way to integrate functions.

2.2 Connections and Covariant Di�erentiation

A connection D on a manifold M is a function

D : X (M)×X (M)→X (M) : V,W 7→ DVW

that is F (M)-linear in V , R-linear in W and such that DV (fW ) = (V f)W +fDVW for f ∈ F (M).
DVW is the covariant derivative of W with respect to V for the connection D. The pair (V,DV )
uniquely specify a tensor derivation; the notation DV will be used in general for the tensor derivation
(e.g. for a scalar �eld f , we write DV f = V f).

Theorem. The Fundamental Theorem of Riemannian Geometry. On a Riemannian manifold
(M, g), there exists a unique connection ∇ such that [V,W ] = ∇VW −∇WV and ∇Xg = 0.

The connection ∇ appearing above is the Levi-Civita Connection, and the tensor derivation
associated with its covariant derivative gives a canonical way to di�erentiate tensor �elds on (M, g).
The �rst condition is referred to as the torsion-free condition, and the second as the metric-
compatible condition. The metric-compatibility can be seen as generalising the identity

∂i (X · Y ) = (∂iX) · Y +X · (∂iY )

for the partial derivative and dot product on Rn.
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De�nition 20. The covariant differential of a tensor �eld A ∈ T r
s M is the tensor ∇A ∈ T r

s+1

de�ned by
(∇A)

(
θ1, . . . , θr, X1, . . . , Xs, V

)
= (∇VA)

(
θ1, . . . , θr, X1, . . . , Xs

)
.

We write ∇i for ∇∂i .

De�nition 21. The christoffel symbols are de�ned by Γijk = dxi (∇j∂k) and can be calculated
from the metric as

Γijk =
1

2
gim (∂kgmj + ∂jgkm − ∂mgjk) .

De�nition 22. The divergence of a vector �eld X is

divX = tr∇X = dxj (∇jX) .

An important formula that holds for all vector �elds X is

LXdµ = divX dµ.

2.3 Intrinsic Curvature

Curvature is a measurement of the local deviation of the geometry of a space from that of Rn. We start
with a fairly complicated tensor, and then de�ne more approachable quantities derived from it. In
index notation, the three common curvature tensors are all notated by R, with the number of indexes
distinguishing them.

De�nition 23. The Riemann Curvature Tensor of a Riemannian manifold is the (1, 3)-tensor
�eld (usually thought of as a map V × V × V → V ) given by

R (U, V )W =
(
∇U∇V −∇V∇U −∇[U,V ]

)
W.

One The �totally covariant� curvature tensor is the (0, 4)-tensor �eld

R (U, V,X,W ) = g (R (U, V )W,X) .

In co-ordinates, the curvature tensor is

Rijkl = ∂lΓ
i
kj − ∂kΓilj + ΓilmΓmkj − ΓikmΓmlj

where the components are ordered such that Rijkl = dxi (R (∂k, ∂l) ∂j).

One sees that for Euclidean space (where the Christo�el symbols vanish), we have ∇i∇jX =
∇j∇iX and [∂i, ∂j ] = 0; so the Riemann tensor vanishes (and so will all the curvature measurements
we de�ne in the following).

De�nition 24. The Ricci Curvature is the (0, 2)-tensor

Ric (W,V ) = tr (U 7→ R (U, V )W )

or in co-ordinates Rij = Rkikj .

The Ricci curvature can be interpreted as measuring deviation in the volume of thin cones - the
larger the value of Ric (v, v), the smaller the volume of a thin cone in the direction v with a given
length. When Ric (v, v) = 0, the volume of the cone will agree with one in Euclidean space with the
same solid angle and length to �rst order in the length. One can formalise this in terms of inequalities
involving the canonical volume form; see e.g. [3, Ch 9].
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De�nition 25. The scalar curvature is the trace of the Ricci tensor with respect to the metric:

Sc = R = trgRic = gijRij .

The scalar curvature at p measures the deviation in the volume of a small ball around p: The
greater the scalar curvature, the smaller the volume of a small ball. A scalar curvature of 0 at p means
the volume of an ε-ball agrees with that in Euclidean space up to 4th order in p.

De�nition 26. The Sectional Curvature of a plane Π = span (u, v) ⊂ TpM is

sec (Π) =
Rp (u, v, u, v)

gp (u, u) gp (v, v)− gp (u, v)
2

and depends only upon the plane Π, not the basis {u, v} chosen. If every sectional curvature at p is
zero, then Rp is zero.

The sectional curvature has an interpretation in terms of the Gaussian curvature of submanifolds
with the given tangent plane; we will see this later.

2.4 Geodesics

De�nition 27. A tensor �eld A along a curve γ is parallel if ∇γ̇A = 0. A curve γ is a geodesic
if its velocity vector is parallel; i.e. ∇γ̇ γ̇ = 0. In co-ordinates, this condition becomes the Geodesic
Equation:

d2γi

dt2
+ Γijk

dγj

dt

dγk

dt
= 0

where γi is shorthand for the map xi ◦γ : I → R. Geodesics have constant speed, because ∇γ̇g (γ̇, γ̇) =
2g (∇γ̇ γ̇, γ̇) = 0. The geodesic equation is second-order; so an initial point γ (0) and direction γ̇ (0)
specify a unique geodesic; if all the geodesics can be de�ned on all of R, the manifold is geodesically
complete.

De�nition 28. The exponential map at p is a map expp : TpM →M de�ned by

expp (u) = γu (1)

where γu is the unique geodesic starting at p with velocity u. Intuitively, the exponential map wraps
the tangent space around the manifold.

Theorem 2. Hopf-Rinow [1]. For a connected Riemannian manifold (M, g), the following are
equivalent:

1. Every closed, bounded subset of M is compact;

2. (M,d) is complete as a metric space, where the metric is d (p, q) = sup {L (γ) : γjoins pto q}
where L (γ) =

´
γ

√
g (γ̇, γ̇) is the length of γ.

3. M is geodesically complete.

2.5 Geometry of Submanifolds

De�nition 29. A hypersurface of a n+ 1-manifold (M, g) is a submanifold N of dimension n.
At each point p, there is a natural vector space inclusion TpN ⊂ TpM ; so we can de�ne the one-

dimensional orthogonal complement TpN
⊥ ⊂ TpM . There is therefore a unique (up to sign) unit

normal to TpN for each point; if N is orientable, we can de�ne a global vector �eld of normals

n : N → TM

p 7→ n (p) ∈ TpN⊥.
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De�nition 30. The shape tensor of a hypersurface N ⊂M is the (1, 1)-tensor

S = ∇ν

where ν is the �outwards� normal to N (in some cases this can be de�ned sensibly; in general, simply
take a non-vanishing normal vector �eld and declare it to be �outwards�). The second fundamental
form of M is simply the (0, 2)-tensor obtained by lowering an index of S:

k (X,Y ) = g (S (X) , Y ) = g (∇Xν, Y ) ,

sometimes written II (X,Y ). k is symmetric, and supplies the normal component of the covariant
derivative: for X,Y ∈X (M), we have

∇XY = DXY + k (X,Y ) ν

where D is the Levi-Civita connection on the Riemannian submanifold (N,h = g|TN ), and the vector
�elds are extended to X (M).

Theorem. Gauss Equation. For a hypersurface N ⊂M and vector �elds X,Y, Z,W on N , we have

RN (X,Y, Z,W ) = RM (X,Y, Z,W ) + k (X,Z) k (Y,W )− k (X,W ) k (Y, Z)

where RM , RN are the Riemann curvature tensors of (M, g), (N,h) respectively.
Codazzi Equation. For a hypersurface N ⊂M and vector �elds X,Y, Z on N , we have

RM (X,Y, ν, Z) = ∇Xk (Y,Z)−∇Y k (X,Z) .

The shape tensor embodies the extrinsic curvature of the submanifold N ; i.e. it depends on the
particular embedding N →M and gives us geometric information about the embedding.

De�nition 31. The principal curvatures of a submanifold N ⊂ M are the eigenvalues of the
shape tensor.

The mean curvature is the mean of the principal curvatures, H := 1
n trS.

The Gaussian curvature of a two-dimensional submanifold N in a Riemannian 3-manifold can be
found using the Gauss equation in an orthonormal frame {E1, E2} for X (N):

K = RN 1212 = RM 1212 + k11k22 − k12k21 = secTN + detS.
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3 Partial Di�erential Equations

3.1 Calculus of Variations

One very useful approach to partial di�erential equations (PDEs) is via the calculus of variations and
functional analysis. In the calculus of variations, one studies functionals (also known as actions) of
the form

SUL : A → R : u 7→
ˆ
U

L (u (x) ,∇u (x)) dx

where L : R × Rn → R is the Lagrangian, U is the domain of interest and A ⊂ RU is a space of
functions. Varying u and integrating by parts then shows that for any smooth u that locally extremises
the action in the space C∞ (U), the Euler-Langrange equations

div
∂L

∂∇u
=
∂L

∂u
(3.1)

hold. Given a PDE, one then attempts to �nd a Lagrangian L such that the Euler-Lagrange equation
is equivalent to the PDE. One can then study the set of local minimisers of the action SL , which are
known as weak solutions. If one can prove the existence of a weak solution and then show that it
is in fact smooth (or regular), then one has in fact shown the existence of a strong solution. This
is done by adding some structure to A : if we can make A a compact topological space such that
the action functional is continuous, then we have a minimiser. (In practice we often do not have full
continuity, but a weaker and still su�cient condition). Usually A will in fact be a Banach space, such
as a Sobolev or Hölder space.

3.2 Functional Analysis

The natural setting for the calculus of variations is functional analysis, and in particular the theory
of Banach and Hilbert spaces. We will brie�y de�ne some useful categories of vector spaces and state
some useful theorems.

De�nition 32. A topological vector space (over R) is a real vector space V equipped with a
topology such that scalar multiplication and addition are continuous.

De�nition 33. A normed vector space (over R) is a vector space V equipped with a function
‖·‖ : V → R such that

1. ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α| ‖x‖ for any α ∈ R, x ∈ V ,

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

Any normed vector space is a metric space with metric d (x, y) = ‖x− y‖, and is a topological vector
space with the metric topology.

De�nition 34. A Banach space is a normed vector space which is complete as a metric space.

De�nition 35. A Hilbert space is a Banach space whose norm is derived from an inner product
(i.e. there exists a positive de�nite symmetric bilinear form B on V such that ∀x ‖x‖2 = B (x, x) ).

De�nition 36. The dual of a topological vector space V is the space of continuous linear functionals
on V :

V ∗ := C (V,R) ∩ L (V,R) .
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The dual space is a Banach space when given the operator norm

‖ξ‖V ∗ := sup
‖x‖V =1

|ξ (x)| .

There is a natural embedding i of a topological vector space V into its double dual V ∗∗, given by

(i (x)) (ξ) = ξ (x) .

In the �nite dimensional case, this is an isomorphism; but it is just an inclusion in general. If i is an
isomorphism then V is called reflexive.

De�nition 37. The weak topology on a topological vector space V is the coarsest topology such
that every (strongly) continuous linear functional is (weakly) continuous. If xn → x in the weak
topology (i.e. ξxn → ξx for every ξ ∈ V ∗), we write xn ⇀ x.

De�nition 38. The weak-* topology on the dual space V ∗ is the coarsest topology such that the
maps i (x) : V ∗ → R are continuous for each x ∈ V .

Theorem 3. (Banach-Alaoglu). The closed unit ball
{
x ∈ V ∗

∣∣∣ ‖x‖ ≤ 1
}

is compact in the weak-*

topology.

Corollary. In a re�exive Banach space (e.g. a Hilbert space), every bounded sequence has a weakly
convergent subsequence.

Proposition 1. Closed, convex subsets of a Hilbert space are weakly closed.

3.3 Function spaces

The Banach spaces we will be using are spaces of functions on subsets of Rn (or more generally on
manifolds). The simplest examples are integrable functions (the Lp spaces) and k-times continuously
di�erentiable functions (the Ck spaces).

We will de�ne a number of spaces of functions in the following sections. In general, when A (U) is
a space of real-valued functions over U , A (U,Rn) will denote the space of vector �elds U → Rn such
that each component function is in A (U), and the norm can be taken as

‖X‖A (U,Rn) = ‖ |X| ‖A (U)

for any norm |·| on Rn. (It turns out that all such norms are topologically equivalent.)
A0 (U) denotes the functions in A (U) with compact support. The local version of A (U) is de�ned

by

Aloc (U) =
{
f : U → R

∣∣∣f |K ∈ A (K) for each compact K ⊂ U
}
.

3.3.1 Lp spaces

De�nition 39. The Lp norm of a function f : U → R is

‖f‖p = ‖f‖Lp(U) =

(ˆ
U

|f |p
)1/p

or for p =∞,
‖f‖p = ess supx∈U |f (x)| .

The Lp space over U is
Lp (U) =

{
f : U → R

∣∣∣ ‖f‖p <∞}
where we identify functions that agree almost everywhere (i.e. except on a set of Lebesgue measure
zero). For p = 2, we obtain a Hilbert space L2 (U) with the inner product

〈f, g〉 =

ˆ
U

fg.
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3.3.2 Ck spaces

De�nition 40. The space of k-times continuously di�erentiable functions on a domain U is denoted by
Ck (U). When f and its derivative are bounded (or alternatively when U is compact, which guarantees
boundedness), we can make Ck (U) a normed space.

The Ck norm of a function f : Rn ⊃ U → R is de�ned by

‖f‖Ck =

k∑
j=0

∑
α∈nj

sup |Dαf |

where
Dα = ∂α(1)∂α(2) · · · ∂α(j)

is the jth-order derivative operator described by the multi-index α ∈ nj = {1..n}j and D∅f = f .
The sum over all derivatives will appear again later in the context of other function spaces; it

essentially means that convergence of a function requires (some simpler) convergence of all of its
derivatives up to the relevant order.

3.3.3 Weak Derivatives and Sobolev Spaces W k,p, Hk

To apply the tools of functional analysis to the solution of PDEs, we would like to work with a complete
space of functions. The Sobolev spaces are the completion of the Ck spaces with respect to norms that
ensure Lp convergence of the �rst k derivatives.

If f ∈ C1 (U,R), then we have a gradient �eld ∇f ∈ C0 (U,Rn). For any Y ∈ C∞0 (U,Rn)
integration by parts gives ˆ

U

(∇f · Y + fdivY ) =

ˆ
U

div (fY ) = 0.

For non-di�erentiable f , we use this as the de�nition of ∇f :

De�nition 41. X ∈ L1
loc (U,Rn) is the weak gradient of f ∈ L1

loc (U) if for each Y ∈ C∞0 (U,Rn)
we have ˆ

U

(X · Y + fdivY ) = 0.

If f has a weak gradient, it is unique and we call it ∇f .

De�nition 42. The Sobolev space W 1,p is

W 1,p (U) =
{
f ∈ Lp (U)

∣∣∣f is weakly di�erentiable, ∇f ∈ Lp (U,Rn)
}
.

The (1, p) Sobolev norm of a weakly di�erentiable function f is

‖f‖W 1,p(U) =
(
‖f‖pLp(U) + ‖∇f‖pLp(U,Rn)

)1/p

.

For p = 2, H1 (U) = W 1,2 (U) is a Hilbert space with inner product

〈f, g〉H1(U) = 〈f, g〉L2(U) +

ˆ
U

∇f · ∇g.

We can generalise the Sobolev spaces to higher order derivatives by iterating integration by parts,
which gives ˆ

U

(
fDαϕ− (−1)

k
ϕDαf

)
= 0

for any ϕ ∈ C∞0 (U) and multi-index α of order k. We then say
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De�nition 43. A function h is an αth weak partial derivative of f if for every ϕ ∈ C∞0 (U) we have

ˆ
U

(
fDαϕ− (−1)

k
ϕh
)

= 0.

If f has an αth weak partial derivative, it is unique and we call it Dαf . We then obtain the
higher-order (k, p) Sobolev spaces using the norms

‖f‖pWk,p(U) =

k∑
j=0

∑
α∈nj

‖Dαf‖pLp(U)

which for p = 2 are Hilbert spaces Hk (U) with inner products

〈f, g〉Hk(U) =

k∑
j=0

∑
α∈nj

〈Dαf,Dαg〉L2(U) .

W k,p
0 (U) denotes the closure of C∞0 (Ω) in W k,p (U), and is exactly the set of W k,p functions

vanishing on ∂Ω.

Theorem 4. The smooth subspace C∞ (U) ∩W k,p (U) is dense in U .

In particular, we have C∞0 (U) 3 u ∗ ϕn → u ∈ W k,p
0 (U) where ϕn is an approximation of the

identity and ∗ denotes convolution.

3.4 The Direct Method

While it would be convenient for the purposes of minimisation to have a continuous functional over
a compact space, it is usually not quite that simple. We give here an example of a slightly more
subtle minimisation argument, a speci�c case of what is known as the direct method of the calculus of
variations. The proof is immediate given basic Banach space theory; in applications, all the work lies
in showing the desired properties hold for the given set. The combination of coerciveness and weak
closure combine to give weak convergence of the minimising subsequence.

Theorem 5. Let H be a separable Hilbert space (e.g. H1). Then if a non-empty subset K ⊂ H is
closed in the weak topology and F : K → R≥0 is

1. weakly lower semi-continuous: F (x) ≤ lim infk→∞ F (xk) when xk ⇀ x; and

2. coercive: F (x)→∞ whenever ‖x‖H →∞

then F has a minimum on K.

Proof. Take a sequence xn such that F (xn) → infK F . Then xn is bounded (if not, there would
be a subsequence on which ‖xn‖ → ∞ but F (xn) → infK F 6= ∞). Since H is re�exive, xn has
a weakly convergent subsequence xnk ⇀ x0 by the Corollary to Theorem 3. We therefore have
F (x0) ≤ lim infk→∞ F (xnk) = limn→∞ F (xn) = infK F ; i.e. x0 minimises F over K.

We will apply this theorem to Laplace's equation in the next subsection, and Plateau's problem in
Section 4.
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3.5 Laplace's Equation

We will now apply the preceding theory to Laplace's equation: ∆u = 0. We will use Dirichlet boundary
conditions; i.e. prescribed values for u on the boundary of the compact domain of interest U .

Laplace's equation is easily seen to be the Euler-Lagrange equation of the Lagrangian

L (u,∇u) = |∇u|2 .

The weakly harmonic functions are then the local minimisers of the action E (u) = ‖∇u‖2L2 associated
with this Lagrangian; i.e. the u ∈ H1 (U) such that

d

dt

∣∣∣
t=0

E (u+ tϕ) = 2

ˆ
U

∇u · ∇ϕ = 0

for all ϕ ∈ C∞0 (U) . Given a v ∈ H1 (U) (we are only really interested in the values v|∂U , but this
makes the analysis easier), u ∈ H1 (U) is a weak solution of Laplace's equation on U with Dirichlet
boundary condition v if u locally minimises E and u− v ∈W 1,2

0 (U). We denote the space of functions
meeting the boundary conditions by

Hv =
{
u ∈ H1 (U)

∣∣∣u− v ∈W 1,2
0 (U)

}
.

3.5.1 Existence of Weak Solution

Lemma. (Poincaré Inequality). For U,Hv as above, there is a constant C such that for every u ∈Hv

we have
‖u‖2L2 ≤ C

(
E (u) + ‖v‖2H1

)
Theorem 6. Given a boundary condition v ∈ H1 (U), there exists a u0 ∈ Hv that minimises the
functional E.

Proof. First, note that Hv is non-empty because v ∈ Hv. If un ∈ Hv converges to u ∈ H1 (U), then
we have

u− v = lim
n→∞

(un − v) ∈W 1,2
0 (U)

because W 1,2
0 (U) is closed by de�nition; i.e. Hv is closed. If u,w ∈ Hv and t ∈ [0, 1], then for a

convex combination we have

tu+ (1− t)w − v = t (u− v) + (1− t) (w − v) ∈W 1,2
0 (U)

because both u − v and w − v are in W 1,2
0 (U); i.e. Hv is convex. By Proposition 1, this implies Hv

is weakly closed. If un ⇀ u ∈ H1 (U), we have

E (u) = lim
n→∞

ˆ
U

∇un · ∇u

≤ ‖∇u‖L2 lim inf
n→∞

‖∇un‖

=
√
E (u) lim inf

n→∞

√
E (un)

and therefore E is weakly lower semi-continuous. Finally, if ‖un‖ → ∞ for un ∈ Hv, then either
‖un‖L2 → ∞ or E (un) → ∞. But the Lemma above means the �rst would imply the second; so
no matter what we have E (un) → ∞; i.e. E is coercive. We have shown Hv and E satisfy all the
requirements of Theorem 5; so there exists a minimiser.
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3.5.2 Elliptic Regularity

Now that we have a weak solution, we want to show that it is regular and therefore a strong solution.
For Laplace's equation (and indeed linear elliptic PDEs in general), regularity is provided by the
Sobolev Embedding Theorem, which we state (a weakened version of) without proof (see e.g. [5, Ch
5.6]).

Theorem 7. (Sobolev Embedding Theorem) For a bounded domain U ⊂ Rn and u ∈W k,p (U):

Case 1. k < n/p: We have u ∈ Lq (U) where q = np/(n− kp).

Case 2. k > n/p: We have u ∈ C (U).

Lemma. If u ∈ H1 (U) is weakly harmonic, then u ∈ Hk (U) for every k.

Proof. Let w = ∂iu ∈ L2 (U). For any ϕ ∈ C∞0 (U), de�ne ψ = ∂iϕ; then ψ ∈ C∞0 (U) and we have
(integrating by parts twice)

ˆ
U

w∆ϕ =

ˆ
U

(∂iu) (∆ϕ)

= −
ˆ
U

u∂i∆ϕ

= −
ˆ
U

u∆∂iϕ

= −
ˆ
U

u∆ψ

=

ˆ
U

∇u · ∇ψ = 0

since u is weakly harmonic. This implies that w ∈ H1 (U) [6, Prop 2.4], so applying the de�nition of
the weak derivative, this shows that w is also weakly harmonic. Repeating the argument starting with
w instead of u and inducting shows that all orders of weak partial derivatives of u exist.

Theorem 8. (Weyl's Lemma) Weakly harmonic functions are harmonic.

Proof. Let u be weakly harmonic. By the lemma, u ∈ Hk (U) for each k, so the weak partial derivatives
uij exist and are in W k,2 (U) for each k. In particular, uij ∈ W k,2 (U) for some k > n/2, so applying
Theorem 7 shows that uij ∈ C (U) and therefore u ∈ C2 (U). Since u is a su�ciently di�erentiable
local minimiser of the action, it satis�es the Euler-Lagrange equation; i.e. ∆u = 0.
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4 Application: Minimal Surfaces

The study of minimal surfaces arose from looking for surfaces that minimise area amongst all �nearby�
surfaces. The particular notion of �nearby� depends on the problem; a very common example is the
surface minimising area amongst all surfaces with a given boundary. We can get some results from a
purely di�erential geometric approach, but ultimately proving the existence of solutions requires the
theory of PDEs.

De�nition 44. The area of a parametrised surface X : R2 ⊃ U → Rn is

A (X) =

ˆ
U

√
|Xu ×Xv| du dv

where subscripts denote partial derivatives.

If the family of surfaces considered is closed under local continuous deformations of the parametri-
sation, then a necessary condition for area minimisation is given by the Euler-Lagrange equations for

the Lagrangian L =
√
|Xu ×Xv| =

√
|Xu|2 |Xv|2 − (Xu ·Xv)

2
:

0 = ∂u

(
∂L

∂Xu

)
+ ∂v

(
∂L

∂Xv

)
= ∂u

(
fXu − gXv√

ef − g2

)
+ ∂v

(
eXv − gXu√

ef − g2

)
(4.1)

where e = |Xu|2, f = |Xv|2 and g = Xu ·Xv. We use this as the de�nition of a minimal surface:

De�nition 45. A parametrised surface X : U → Rn is a minimal surface if it satis�es Equation
4.1.

For n = 3, this is equivalent to the mean curvature vanishing. In more generality, for surfaces
N ⊂M in a Riemannian 3-manifold M , the critical points of the area functional

´
N
dµN are still the

surfaces with zero mean curvature: applying the theory of di�erential forms shows that

0 =
d

dt

∣∣∣
t=0

ˆ
ΦXt N

dµΦXt N
=

ˆ
N

LXdµN =

ˆ
N

Hg (X, νN ) dµN

for any vector �eld X, so H = 0. We will stick to the Euclidean case for simplicity.

De�nition 46. A map X : (M, g) → (N,h) between Riemannian manifolds is conformal if it
preserves angles; i.e. if there is a real function λ on M such that

X∗h = λ2g.

For X : R2 → Rn, this can be written as

Xu ·Xv = 0 = |Xu|2 − |Xv|2 . (4.2)

It is not hard to see from (4.1) and (4.2) that a conformally parametrised surface is minimal if and
only if it is harmonic (i.e. Xuu +Xvv = 0).
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4.1 Plateau's Problem

The particular problem we will discuss is known as Plateau's Problem. Given a simple closed curve
Γ ⊂ Rn, consider the family of disk-type surfaces spanning Γ:

CΓ =
{
X ∈ C0

(
D̄,Rn

) ∣∣∣X|D ∈ C2 (D,Rn) , X (∂D) = Γ
}

where D =
{

(u, v) ∈ R2
∣∣∣u2 + v2 < 1

}
is the open unit disk. Then is there a surface of minimal area

in CΓ? Attempting to minimise A as a functional on CΓ, we hit two issues:

• CΓ is not a very nice space; in particular, it is not complete.

• A is invariant under reparametrisations (i.e. the group of di�eomorphisms of the disk).

To address the �rst issue, we instead use a larger class of weakly di�erentiable surfaces:

HΓ =
{
X ∈ H1 (D,Rn)

∣∣∣X|∂D is a monotone parametrisation of Γ
}
.

For the second, we replace the area by the Dirichlet energy.

De�nition 47. The Dirichlet energy of a parametrised surface X : R2 ⊃ U → Rn is

E (X) =
1

2

ˆ
U

|∇X|2 =
1

2

ˆ
U

(
|Xu|2 + |Xv|2

)
du dv.

The energy is invariant under conformal transformations of U ; i.e. E (X ◦ ψ) = E (X) for any confor-
mal di�eomorphism ψ : U → U .

4.1.1 Existence of a Minimiser

We would like to apply Theorem 5 to �nd a minimiser for E; but there is still an issue:

Proposition 2. HΓ is not weakly closed.

Proof. Take a sequence ωj ∈ D, ωj → 1 and de�ne the sequence of conformal di�eomorphisms

gj (z) =
ωj + z

1 + ω̄jz

of the disc, where we have identi�ed D ⊂ C to use the mutliplication. For each z we have pointwise
convergence gj (z) → 1; so for X ∈ HΓ we have Xj = X ◦ gj → gj (1) pointwise. By the Poincaré
Inequality, ‖Xj‖ is bounded, so we can pass to a weakly convergent subsequence Xj ⇀ X0. Noting
that E (X,Y ) =

´
∇X · ∇Y = 1

2 (E (X + Y )− E (X)− E (Y )) is conformally invariant, we have

ˆ
∇X0 · ∇ϕ = lim

j→∞

ˆ
∇Xj · ∇ϕ

= lim
j→∞

ˆ
∇X · ∇ϕ

= lim
j→∞

ˆ
∇X · ∇ (ϕ ◦ gj)

=

ˆ
∇X · ∇

(
lim
j→∞

ϕ ◦ gj
)

= 0

because ϕ converges weakly to the constant map 1. This implies X0 itself is a constant map, so
X0 (∂D) 6= Γ.
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To circumvent this, we note that the conformal group of the disc is G = PSL (2,R), which acts
three-point homogenously (assuming �xed order) on ∂D. Therefore we can choose θ1, θ2, θ3 ∈ ∂D and
p1, p2, p3 ∈ Γ and use the restricted class of maps

H ∗
Γ =

{
X ∈H

∣∣∣X (θk) = pk∀k
}

without losing any surfaces (each surface in HΓ can be conformally reparametrised appropriately using
the three-point homogeneity). Now that we have removed the invariance, HΓ is weakly closed [7, 6].

Theorem 9. If HΓ is non-empty, then E achieves a minimum in HΓ.

Proof. Since HΓ is non-empty, we can reparametrise a surface in HΓ to show that H ∗
Γ is non-empty.

E is both weakly lower-semicontinuous and coercive (proofs very similar to Subsection 3.5.1); so by
Theorem 5 there is an X0 ∈ H ∗

Γ that minimises E. Since any surface in H has a parametrisation in
H ∗

Γ , X0 minimises E over H ∗
Γ .

4.1.2 Regularity of Minimiser

Theorem 10. The minimiser X0 ∈HΓ is a harmonic map X0 ∈ C2 (D,Rn).

Proof. Since X0 minimises E, for any Y ∈W 1,2
0 (D) we have

0 =
d

dt

∣∣∣
t=0

E (X0 + tY )

=
d

dt

∣∣∣
t=0

(
E (X0) + t2E (Y ) + 2tE (X,Y )

)
= 2

ˆ
∇X0 · ∇Y ;

i.e. the components of X0 are weakly harmonic. By Theorem 8, the components of X0 are C2 and
harmonic.

By the Riemann mapping theorem (ψtD is conformal to D), we also have

0 =
d

dt

∣∣∣
t=0

E
(
X0 ◦ ψ−1

t ;ψtD
)

where the second argument to E is the domain of the energy integral. After some work [7, 6], this
implies that X0 is also conformal.

4.1.3 Details

We have shown that if there are any surfaces spanning Γ, there is a minimal one with least energy. One
can show that if Γ is recti�able (can be parametrised by a weakly di�erentiable function S1 → Γ) then
HΓ is non-empty [6]. Applying conformal uniformisation allows one to show that energy minimisation
and area minimisation are equivalent [6]. Thus, we conclude with the solution to Plateau's Problem:

Theorem 11. For a recti�able simple closed curve Γ ⊂ Rn, there exists a harmonically/conformally
parametrised, minimal surface Ω spanning Γ that minimises area amongst all surfaces spanning Γ.
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