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Abstract

In the mathematics of general relativity, the concepts of quasi-local and global mass/energy
do not arise as naturally as in Newtonian and Lorentzian physics. While the stress-energy
tensor component Too represents the local energy density (of a given observer), the lack of a
well-defined gravitational energy density means that the local conservation law for Ty familiar
from special relativity does not hold in the gravitating case. We discuss this difficulty and
show how the global/total mass can be defined assuming asymptotic flatness. The ADM
mass provides a definition of the total mass in terms of the three-dimensional Riemannian
geometry of a spacelike slice, allowing us to discard the time dependence and Lorentzian
signature once we place sufficient constraints on the extrinsic curvature. From a physical
perspective, we expect the total mass of a universe to be non-negative, and in the case of a
universe containing a black hole (identified by its event horizon) to be at least the usual mass
associated a black hole of a given surface area. These two statements (when cast in terms
of the intrinsic geometry of a maximal spacelike hypersurface) are respectively known as the
Positive Mass Theorem m > 0 and the Riemannian Penrose Inequality 2m > r, and have been
proven in recent decades. We derive the Geroch monotonicity formula for the smooth inverse
mean curvature flow and subsequent heuristic proof of the Penrose inequality, and then present
the weak formulation introduced by Huisken and Ilmanen that gives a rigorous proof. We also
discuss Bray’s proof of the Penrose inequality, the generalisation of the Penrose inequality to
asymptotically flat solutions of the Einstein-Maxwell equations and why the proof of Bray
cannot possibly be generalised in this manner. The application of the weak inverse mean
curvature flow to the computation of the Yamabe invariant of 3-manifolds is also discussed,
including a sketch of the proof that o (]R]P’3) = 67%/3.
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Introduction

This paper is concerned with the Penrose Inequality, which is a statement in general relativity
that bounds the total mass of a spacetime from below in terms of the horizon area of black holes.
When some assumptions are made about the spacetime, the total mass can be expressed in terms
of the intrinsic Riemannian geometry of a spacelike hypersurface, and thus the Penrose inequality
becomes a statement about three-dimensional Riemannian manifolds. An important case of this
inequality can be proven using a weak formulation of a geometric flow known as the Inverse mean
curvature flow (IMCF). We will see the details of this proof and other applications of the flow,
both to generalisations of the Penrose inequality and to other topics in Riemannian geometry.

In Section 1, we discuss the difficulties that arise in the definition of mass/energy in general
spacetimes. The nature of gravitation in general relativity is radically different to the simple po-
tential /force model of Newtonian gravitation; in particular, there is no notion of local gravitational
energy density, so we cannot define a total energy density satisfying the usual continuity equation.
However, making some assumptions about the asymptotic geometry of the spacetime gives a well-
defined total mass, known as the ADM mass. It agrees with the usual notion of mass for the
symmetric black hole spacetimes (Schwarzschild, Kerr, Reissner—Nordstrém) and is expressed in
terms of the acceleration of initially stationary observers at infinity, where the spacetime looks like
a point mass. Assuming the existence of a maximal spacelike hypersurface, we arrive at a precise
statement of the Riemannian Penrose Inequality for 3-manifolds of positive scalar curvature.

Section 2 discusses the initial heuristic proof of the Penrose inequality. It was noticed by Geroch
that the quantity known as the Hawking quasi-local mass was non-decreasing when surfaces were
flowed outwards by the inverse of their mean curvature. Assuming the existence of such a flow
starting at the black hole horizon and expanding towards coordinate spheres asymptotically, the
Penrose Inequality holds, as pointed out by Jang and Wald. However, the existence of such a flow
is not guaranteed, with some quite simple counterexamples easily found.

Section 3 discusses the weak formulation of the flow introduced by Huisken and Ilmanen. By
allowing the surfaces to jump outwards at certain times, they avoid the singularities of the smooth
flow and have a guaranteed solution with the desired asymptotics; and (by careful choice of the
minimisation scheme to control the geometry at the jump times) the monotonicity of the Hawking
mass can be preserved. We will present most of the details of the complete proof.

Section 4 has a more broad scope, and discusses generalisations of the Penrose inequality and
other applications of the IMCF. One generalisation of the inequality (that allows disconnected
horizons) cannot be proven by modifications of the IMCF argument, even though it is known to
be true via a different proof due to Bray. The opposite is true for the generalisation to charged
black holes - the argument of Huisken and Ilmanen can easily be generalised, while the analogous
statement that a modification of Bray’s proof (i.e. allowing disconnected horizons) would produce
is demonstrably false. The IMCF also has an application in computing the so-called Yamabe
Invariant of compact 3-manifolds; so we will see that Bray’s proof in no way obsoletes the utility
of the IMCF.

The reader should have a basic knowledge of (semi-)Riemannian geometry, special & general
relativity and functional analysis. Many of the arguments at the core of the weak formulation rely
on geometric measure theory and the existence and regularity of solutions to linear elliptic PDEs,

but a detailed knowledge of these topics is not necessary.



1 Mass in General Relativity

1.1 Energy Conservation

Conventions: we use natural units where ¢,G = 1. The signature of the spacetime metric is
(= +,+,+).

In special relativity, the classical notion of mass/energy is easily defined and satisfies useful
conservation laws as in pre-relativistic physics. We have the local mass/energy as encapsulated
by the Stress-energy tensor 7', which is a conserved current (0*T,, = 0) as a consequence of
Noether’s theorem and the invariance of physical Lagrangians under spacetime translations. Fixing
an observer (i.e. a Lorentzian coordinate system), a compact region of space K C R? and a time

interval [tg,t1], we have (by the divergence theorem)

0 = / 0T dV dt
Kx [to,tl]

t1
= / ToodV —/ Toodv—‘r/ / TMQVMdA dt
KX{tl} KX{tU} to OK

where v is the outwards normal to K. The first two terms are the total energy inside K at times ¢
and t; and the last term is the integrated outwards energy flux through 0K, so this is local energy

conservation
Final Energy = Initial Energy — Total energy lost through boundary.

If we assume the stress-energy tensor has compact support on the a spatial slice, then for K
containing this support (i.e. K containing all matter in the universe) the flux term vanishes and

we find
dE_ d

— = — Toodv = 0;
At dt [,

i.e. the total energy is conserved. When instead the energy flux does not have compact support
but dies off sufficiently fast (as r=2) at spatial infinity, we can take the limit » — oo with K = B,
to arrive at the same result.

When we move to general relativity, we replace the Minkowski spacetime with an arbitrary
Lorentzian 4-manifold (L, g), and the condition on the stress-energy tensor becomes V*T),, = 0
for V the covariant derivative of (L,g). For the purposes of measuring lcoal energy density, an
arbitrary observer is now represented by a timelike vector field & = 9/9t. In our argument for
energy conservation, we used the fact that the divergence of the energy flux is

0Ty 0 = 0" (T d5) = (0%T,,) 65 = 0.
If we now make the natural replacements 9 — V and J§ — £”, we instead find
VE(Tw€") = (VIT,,) & + T,V =T, VHEY;

so local conservation of energy only holds in general if the symmetric part of VE” is zero; i.e. £ is a
Killing field. (The argument is identical to the Minkowski case, where the 4-dimensional cylindrical
region is replaced by the region swept out by a hypersurface under the flow of &; i.e. K x {t} is
replaced by <I>§_t ,Ko for Ky some initial spacelike hypersurface with boundary.) The physical

justification for this failure is that there is now energy stored in the “gravitational field” that is



not accounted for in the stress-energy tensor. Since the Newtonian gravitational energy density is
proportional to |V<I>\2 (for @ the potential) and ® is proportional to goo — 1pp in the Newtonian
limit [2, Section 4.4a], any candidate for a general relativistic gravitational energy density should
be expressed in terms of the first covariant derivative of the metric. But Vg = 0, so by moving
to the geometric theory we have lost the concept of local gravitational potential energy, and thus

cannot define a meaningful conserved local energy density.

1.2 Total Energy

Despite the issue raised in the previous section, in turns out that in certain cases there is a well-

defined total mass for entire systems. We begin by looking at the case of Newtonian gravity, where

m:/ pdV
K

for the mass density p and a set K containing the support of p. We can write this using Poisson’s

the total mass is easily defined as

equation 47p = A® (P the gravitational potential) and the divergence theorem as

m = /pdV
B’V‘
1
—/ AD AV
471' K

= i/ Vo -vdA
471' K
1

= — [ a-vdA (1.1)
47 K

where a is the acceleration due to gravity and v is the outwards unit normal to K. In the case where
p is not compactly supported but decays sufficiently fast at infinity, we can take an exhaustion of
R3 by spheres, giving the limit

m = pdV = lim ,i/ a-vdA.
R3 r—oo 4 B,

We can now interpret a - v as the outwards force done to hold a unit mass in place against the
force of gravity. Thus we can translate this definition of mass into general relativity when we have
notions of “holding in place” and of a “large sphere”. Formally, this means we want a stationary
spacetime L (one with a global time translation symmetry § = 0/9t, V(,§,) = 0) with a foliation
of spacelike slices M, (such that M; ;s = <I>§Mt) that are asymptotically flat (i.e. approach flat
space at spacelike infinity).

To generalise equation 1.1 to the case of general relativity, we can take S to be a topological
sphere inside one of the spacelike slices enclosing the support of the stress-energy tensor and a to
be the acceleration of an observer following the time translation &, which is a = %ng, V = |¢]
[2]. If we assume the spacetime is static (i.e. the slices M; are orthogonal to ), then the sphere
S has unit normals v (in the spacelike direction) and £/V (timelike), so the canonical volume
4-form is dp = dA A v* A €°/V. Thus (remembering that ¢ is a Killing field and therefore satisfies



V& = V&)

1
m = —— [ {a,v)dA
47 S

_ _i/ L vickqa.

471' Sykv
1 .
= —— | Vighye,v1dA
A /SV f I/[kfj]v
1 .
= —_—— ijkdujklmd$l Adx™
8 S
1

= —— | xde.
87 S*E

This is known as the Komar Integral. Since

dx dé = xAE = ; « (Re (&, ) (1.2)

[2] which vanishes in vacuum regions by Einstein’s equation, Stoke’s theorem tells us the Komar
integral is the same for any two homologous spheres enclosing the support of the stress-energy
tensor; so in the case when the matter content has finite extent we can use this as the definition
of the total mass. Noting that 8mm = — f*df is a coordinate-free expression, we can therefore
discard the requirement that the spacetime be static and use this expression for the mass of any
stationary spacetime. As in the Newtonian case, we can generalise this by taking a limit r — oo
and requiring the stress-energy tensor to decay sufficiently fast at spatial infinity; call the limiting
value of m the Komar Mass. In the case where S is eventually the (full) boundary of a compact
region B (e.g. when the universe has Euclidean topology), we can use Stoke’s theorem, (1.2) and

Einstein’s equation to write the Komar mass in terms of the stress-energy tensor:

m;ﬂ/Bd*ng/B(T;tr(T)g) (¥,€);

but for general spacetimes, no such volume integral expression exists. The Komar mass can be
generalised further to non-static spacetimes that have an asymptotically Killing timelike vector
field [2]. However, since we are interested in the mass at a “single moment in time”, the dataset we
actually want to work with is (M, g, k) where M is a 3-manifold taken as a maximal spacelike slice
of the spacetime L, g is the induced Riemannian metric on M and k is the second fundamental
form of M — L. The condition of mazimality means tr k = 0. This would allow everything to be
done in the framework of Riemannian geometry. It turns out that we can rewrite the Komar mass

in terms of the 3-dimensional geometry [3], giving an expression known as the ADM mass:

1 .
MADM = Ton 21: /BBT (gz'j,i - gm‘,j) vdA

where the metric components and area form are defined in terms of an asymptotically flat coordin-
ate system - we will make this precise soon.

Arnowitt, Deser and Misner (ADM) took the approach of describing general relativity in
terms of a foliation by spacelike 3-manifold slices. Writing the usual Einstein-Hilbert Lagrangian
L = R,/g in terms of the foliation variables, they arrived at a Hamiltonian formulation of general
relativity. By applying a slight generalisation of Noether’s Theorem (necessary because the Lag-

rangian uses second-order derivatives of the metric) to the time-translation symmetry &, we arrive



at the exact same expression for the ADM mass. [6]

Definition 1.1. A Riemannian manifold (M, g) is strongly asymptotically flat if there is a compact
set K and coordinates z¢ on M\ K such that

lgi; — 65l € O(1/r)  lgijiul € O (1/r?)

asT = /), vz’ = oo, where § = diag (1,1, 1) is the standard Euclidean metric for the coordinates

zt

Definition 1.2. The ADM mass of an asymptotically flat manifold is

mapm = —— lim Z/ gz] i — Gii ]) v dA (13)

167 r—oo

where v is the outwards unit normal field to the 2-sphere 0B, (0) = {3, 2'a’ = r?}, dA is the
area form induced by the flat metric on 9B, and the tensor components are with respect to the
asymptotic coordinates x°.

Proposition 1.3. [/] The ADM mass is well-defined in strongly asymptotically flat manifolds;
i.e. the limit converges and is independent of the coordinate system chosen - if * and y* are two
coordinate systems satisfying the asymptotic conditions, then they both give the same value for

MADM-

The total mass essentially measures the asymptotic rate at which the gravitational field drops
off; so since the analogue of the gravitational potential in general relativity is the metric, the ADM
mass measures the asymptotic rate at which the space approaches Euclidean space. We make this

precise with the following examples.

Example 1.4. In the Newtonian case, ® is harmonic in the vacuum region and thus we can expand

® (assuming it is O (r‘l) to ensure convergence of total mass) as a multipole expansion
(r,0,¢) Z Z Cor 7Y™ (0, )
=0 m=—1
where Y™ are the normalised spherical harmonics on S?. Thus we have

4mm = lim a—(I)dA

r—oo [g Or

= lim ZZ(—J—UC,W*H/ Y r?dQ
r—00
I m Sy
= lim ZZ(—Z—l)ler_l/ Y,™dQ
T—>00 . o S,
0
— > Cmo=—Coo

m=-—0

i.e. the total mass is just the monopole coefficient.

Example 1.5. In the case where the metric is conformally flat to first order

gi; = (1+ar™)é; +0(r7?)



we can easily make the analogous statement for general relativity precise: we have

AT}

9ijh = =30 + O (r=)
and therefore
1 ax; _ % _
D g’ = =) FmtO( ) =-5+0(7)
1 ax; _3 3@ _3
D gign = = dum g +0 () = =5 +0 (7).
Plugging these into the definition of the ADM mass gives
1 200
= Ter —dA O (r?)dA
maone = gzt ([ Zaas [0 aa)
L 520 .
i (2 0)
.
2

exactly; so up to the factor of 2, the ADM mass is precisely the r—! decay rate of the deviation from
the flat metric. In the Schwarzschild case, the metric is (in isotropic coordinates) (1 +m/2p)* § =

(1 +2m/p+ O (p*2)) 0, so we recover the Schwarzschild mass parameter as the ADM mass.

In what follows, the non-negativity of scalar curvature will be an integral component of some
arguments. This proposition justifies the assumption by showing it to be true for the case of
maximal spacelike hypersurfaces of physically reasonable spacetimes.

Proposition 1.6. Let (M, g, k) be a mazimal spacelike hypersurface of a spacetime (L, g). If (L, g)
satisfies the weak energy condition then (M,q) has non-negative scalar curvature.

Proof. The weak energy condition states that T'(X,X) = Re (X, X) — %Rg (X, X) > 0 for any
future-directed timelike vector X. In particular, consider the future-pointing unit normal v to M;
then we have T (v,v) = Re (v,v) + £ R > 0. Now write the Gauss equation for the scalar curvature
R of the submanifold:

Rijri = Rijia + kickji — kjrka.

Since we are interested in the submanifold scalar curvature E, we want to take 3-dimensional

traces; i.e. contractions with the 3-metric g;; = ¢;; + viv; ‘W

Reji+ Ryjui = Rej + kikji — Kbk
R+2Rc(v,v) = R+H?— k]

where H = trk is the mean curvature of M — L and |l<:|2 =tr (kz) We see now that since H =0

(M is maximal), the weak energy condition says exactly that
R>[k]>>0.
O

Note. We used above (and will continue to use throughout this paper) the convention that

the mean curvature is the trace of the second fundamental form. Classically this was divided by



the hypersurface dimension (to produce the average of the principal curvatures, hence the name

mean).

1.3 Positivity of Mass

Physically, we expect that the total energy of an isolated gravitating system should always be
positive; but this is not at all evident from the definition of the ADM mass. This was known as
the positive mass conjecture. The work of Schoen and Yau in the 1970s led to its proof:

Theorem 1.7. If (M, g) is asymptotically flat with non-negative scalar curvature, then mapy > 0
with equality if and only if M is isometric to R3.

Proof. We give a sketch. Assume m < 0. Then by a conformal transformation we can construct a
metric § such that R > 0 and 7 < 0. Consider the coordinate circles C, := {(:El, T2, x3) |23 + a3 = 02}.
Each C, is spanned by an area-minimising surface S,. One can show that for sufficiently large

h, the surfaces S, are contained in the cylinders {z% + 23 < 02, |23| < h}. Applying the regular-

ity theory for minimal surfaces gives compactness, and thus taking a sequence o, — co we can
extract a subsequence o,, — oo such that Sgnk converges in C? on compact sets to a complete
area-minimising surface bounded between the planes z3 = +h. For a compact variation fv of S,

we have the second variation formula (with Rc (v, v) replaced via the Gauss equation)

1

—fAf+ f? (H— 5

d? v
Tzli-o4 (21" (5 nsuppp) = [ :

SNsuppf

k|* — ;R> dA>0

since S is area-minimising. (A is the Laplacian derived from the induced metric on S). Choosing

/IidA>0.
s

An argument using the Gauss-Bonnet theorem (with boundary term) on the discs B,NS as p — oo

shows that
/ kdA <0,
s

a contradiction. O

an appropriate f, this yields

For a full proof including the existence of g and the construction of the variation f, see the
original paper [5] or the exposition in [6].

1.4 Horizons and Trapped Surfaces

One of the most radical predictions of general relativity is the formation of black holes by gravita-
tional collapse. Black holes are regions of spacetime from which no light rays (and thus no matter
or information/causal effects at all) can escape to future lightlike infinity'. The event horizon is
the boundary of a black hole; i.e. the “point of no return”. In the case of a spherically symmetric
mass of radius r,, in an otherwise vacuum spacetime, the region of spacetime outside the extent
of the mass (i.e. r > ry,) is described by the usual Schwarzschild metric. When the radius of the
mass is less than the Schwarzschild radius rg = 2m, the surface r = rg bounds a black hole. By the
singularity theorem of Hawking and Penrose [7], a physically reasonable spacetime (satisfying some
energy conditions and containing no closed timelike curves) containing a black hole will eventually

IThere is a precise definition of an asymptotically flat spacetime using a compactification that provides points
at spatial infinity, past and future timelike infinity and a space of past and future lightlike infinities (for the various
directions one can escape in).



develop a singularity; i.e. a failure of geodesic completeness that cannot be removed by extending
the spacetime; so even if initially we have a smooth spherically symmetric matter distribution, if
it is sufficiently dense then it will collapse to a point, giving the Schwarzschild slice after this time.
The definition of the event horizon is fundamentally global and intertwined with the 4-dimensional
geometry of the full spacetime; so in general it cannot be defined in terms of the slice data (M, g, k).
However, in the stationary case, the intersection of the event horizon with M is precisely the (locally

defined) apparent horizon [8, 9.3.1], which we will now define.

Definition 1.8. A trapped surface is a surface N < M < L such that the expansion in the normal
future lightlike directions is negative; i.e. try VX < 0 for any lightlike vector field X normal to V.

A marginally trapped surface replaces the strict inequality with < 0.

N = 0C' is an outer marginally trapped surface if it is the boundary of a compact set C' in M
and the marginally trapped inequality holds for X such that g (X,vy) > 0.

In this case, C is called a trapped region.

Here the vector fields X are the generators of flows that represent the trajectories of photons
moving orthogonally from V; so the trapped surface condition means that both the “inwards” and
“outwards” light fronts decrease in area (at least locally). In the time-symmetric case (and in

particular the static case), these generators are (scalings of) £ £ v so we have
0 <try (Vf) + try (Vl/) =+H

(where H = divyv is the mean curvature of N in M) since the fact £ is a Killing field implies V¢

is antisymmetric. That is, the future outwards lightlike expansion is exactly the mean curvature.

Proposition 1.9. If the closure of the union of all trapped regions in M is a smooth manifold

with boundary, then its boundary has zero expansion in the future lightlike directions. [2]

Definition 1.10. Under the hypothesis of Proposition 1.9, the apparent horizon of M is

A=0 (U {trapped regions in M}) .

In the static case, the union of trapped regions is the black hole, and thus A is the event
horizon. The fact that A has zero expansion means that (assuming time symmetry) it has zero
mean curvature in M; i.e. it is a minimal surface of M. Since we took the union of all trapped
regions in M, A is the outermost compact minimal surface in M. We will use this as our definition

of the horizon.

1.5 The Penrose Inequality

While considering the formation of black holes, Penrose originally conjectured [11] (and gave a
physical argument for) an inequality between the (apparent horizon) surface area A (N) of a black

hole and the total ADM mass mapy of the spacetime containing it:

A(N)
16w

MADM 2
Writing A = 4712, this is 2m > r; so we see that the inequality is saturated in the Schwarzschild

case. Since we can always choose the spacetime to be vacuum outside the black hole, this is best
interpreted as being a bound on the area of a black hole of given mass. Moving to the Riemannian

10



picture, the black hole horizon becomes an outermost minimal surface in the spacelike slice M,

and we arrive at the full statement of the Riemannian Penrose Inequality:

Theorem 1.11. Let M be an asymptotically flat, connected, complete Riemannian 3-manifold
with non-negative scalar curvature. If No is an outermost compact minimal surface of M (i.e.

there are no compact minimal surfaces of M enclosing Ny) then

A (No)
167

MADM > (1.4)

where mapwm s the ADM mass of M. Furthermore, if the inequality is saturated, then (M,g) is

isometric to the Schwarzschild slice.

Since the region enclosed by Ny plays no role in either the theorem or its proof, we can discard
the interior and assume without loss of generality that Ny = OM. While this full version of the
theorem has been proven, it cannot be proven by the techniques presented in this paper - see
Section 4.1 for a discussion. We will instead prove the weaker version when the horizon Ny is

connected:

Theorem 1.12. Let M be an asymptotically flat connected complete Riemannian 3-manifold with
non-negative scalar curvature. If OM is compact, connected and a minimal surface, and there are
no compact minimal surfaces in the interior of M then the Penrose inequality holds for Ng = OM .

Furthermore, if the inequality is saturated, then (M, g) is isometric to the Schwarzschild slice.

Proof. We will define the Hawking mass my (E) € R of a surface F and a flow of connected
surfaces N; starting at Ny such that

1. t — mpy (N;) is non-decreasing,

2. mg (No) = \/A(NO) /1671', and

3. myg (Nt) — mapM asS t — 00.

We then have mapm > mp (N:) > mpy (Ng) = /A (Ny) /167 as desired. For the rigidity, see
Proposition 3.16. O

We will present the proof of this theorem given by Huisken and Ilmanen [1]. The central
ingredient is the monotonicity of the Hawking mass first used by Geroch [9] in a proof of the Positive
Mass Theorem (assuming a smooth inverse mean curvature flow starting from small spheres). This
was similarly applied to the Penrose inequality by Jang and Wald [10], under the assumption that
the flow V; remained smooth. The contribution of Huisken and Ilmanen was to define a generalised
weak flow with guaranteed existence that still satisfies the required conditions.

11



2 Smooth Inverse Mean Curvature Flow

This section will introduce the Inverse Mean Curvature Flow and detail the Jang-Wald approach
to the Riemannian Penrose Inequality using the Hawking mass. The only missing ingredient here is
the existence of the smooth flow NV;; and we will see in general that it does not exist, necessitating
the reformulation in Section 3. We will continually refer back to the canonical example of the

Schwarzschild spacelike slice, with initial condition being the event horizon.

2.1 Definition

We start with an intuitive definition of a geometric flow. The motivation behind its introduction

for this problem is Geroch’s monotonicity result, which will be proved later.

Definition 2.1. Let I be an interval and U a smooth 2-manifold. A smooth function z : UxI — M

is a solution of the classical/smooth inverse mean curvature flow (IMCF) if and only if the velocity
field X := 0z /0t = dx (0;) satisfies

1
where H (p,t) is the mean curvature of N; = x (U, t) at p and v (p,t) is the outwards unit normal

to NV; at p.

Example 2.2. The simplest example of the IMCF is for a round sphere in Euclidean 3-space. The
mean curvature of a sphere of radius r is 2!, so the sphere flows outwards at a uniform speed

7/2. Thus the flow consists of concentric spheres N; = S,.(;) satisfying

dr T

dt 2
which has solution 7 (¢) =  (0) e/2.

2.2 Geometric Evolution

Let us investigate the evolution of the submanifold geometry under the smooth IMCF. We can
compute derivatives of various quantities using the flow ®;¥ of the normal velocity field X, since
N; = ®X Ny. First, consider the area A (N;). We find

4 any = 2 / aA
dt lt=0 dt lt=0 q)g(NO
d
= — / ®X*dA
dt t=0 No

- / i’ X" dA
No dt t=0

= / LxdA
No

H|X|dA
No

12



where we used the result of Proposition B.1. Since the evolution equation (2.1) is invariant under
t — t + At, we therefore have

Doy = [ Hix|da
at ..

= A(N) (2:2)

since | X|=1/H for IMCF.

Now consider the evolution of the mean curvature. We will write v = |X| for the speed.

von 1. .
v Ot v
= V,trVv
= trV?,’,V

= —Rec(v,v) +trV2 v
= —Rc(v,v) +d2'V;V,v —dz'Vy,,v
= —Re(v,v) +divV,v — trA?

Now note that for X tangent to the surface we have

(Vou, X)

(-V.,X,v)

(X,v],v) — %VX (v,v)

- (el
Vx (i) (00,v)

—EVX’U = <—1V1),X> )
v

v

and (V,v,v) = 3V, (v,v) = 0, so writing D for the induced connection on the surface we have
Vowv=D,v= —%Dv. Thus

1
divV,ry = (V, Vo, v) +divy (—Dv) .
v

We have

1
diVN (—D’U)
v

Il
|
I
>
Z2
<
|
P
)
N
< | =
N——
T
e
~_—

But also
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Putting these together gives the result

1o

1
PR I 2 -
Tl Re (v, v) — |A] UANU,

which is in the case of IMCF

()l 2.9

ot H H H

2.3 Hawking Mass Monotonicity

Definition 2.3. The Hawking quasi-local mass (or just “Hawking mass”) of a 2-surface N C M is

mpy (N) = w (1 - 16% /NHQdA> (2.4)

where H is the mean curvature scalar of N and R (N) is the “radius” of N; which we define by
analogy with the Euclidean sphere as R (N) = /A (N) /4x .

Example 2.4. Spheres in Schwarzschild. Consider a slice {t = to} of the Schwarzschild spacetime
in isotropic coordinates {p, 0, ¢} where the metric has the form

4 4
m m .
g= (1 + 2/}) 6= (1 + 2p> (dp2 + p2df? + p? sin? 9d<p2) .

Note that the p appearing here is not the usual radial coordinate r, but is related by r» =
p (14 m/2p)*; the horizon of the black hole appears at p = m/2 and p ~ r as p — oo (so we have
the same asymptotic behaviour). To compute the mean curvature of the spheres S = {p = R},
we will use Proposition B.1 in a similar fashion to our derivation of (2.2): since the geometry is

spherically symmetric, we have

4 dA:H|6p|/ A
dp S, S,

from which H can be calculated. The area of a sphere is

4 4
m m
A ::/ dA:/ <1+> 2—47T2<1+)
. S, 52 2p) ° g 2p

and the length of 0, is
2
m
o1 = ool = (14 55)

_ 1 dAy/dp
P |ap| AP

so we have

H =8p(20+m)*(2p—m).

14



Substituting this into (2.4) gives

Ap 1 2 —6 2
mu (Sp) Ton (1 T 5, 64p” (2p+m) " (2p —m)

- Ya 202 [1—4p% (2 =6 (2 2421m4
= o(ltm/2) p<p+m><pm>p(:+%)

= & (@+m? = ep—mp)

This is consistent with the idea of measuring the “total mass” enclosed by the surface S, - the
Schwarzschild manifold models a spacetime that is vacuum except for a “point mass” m. (Note,
however, that in general spacetimes mpy is not a good notion of enclosed mass - for instance,
additivity mg (0AUIB) = myg (0A) + mpy (OB) for disjoint A, B does not hold.)

For a minimal surface N, we have H = 0 and therefore mpg (N) = /i (N) /167 exactly the
term appearing on the RHS of Equation 1.4; and as » — oo, the Hawking mass of the sphere
OB, approaches the ADM mass (see Proposition 2.6). The Hawking mass therefore provides a
connection between the two quantities appearing in the Penrose inequality, and is the centre of the

proof of Theorem 1.12.

Proposition 2.5. The Hawking mass is non-decreasing under the smooth inverse mean curvature

flow of connected surfaces.
Proof. Let R(N;) = /A (N;) /4w. We found earlier that LxdA = dA and therefore

LN =AN) = LR(N,) =

1
dt dt R (N.)

2
and also

8H__A(1>_Rc(y,y)_|A|2

ot H H H

where D, A are the derivatives on the surface. Now we compute

d
— H?dA = Ly (H%dA
g man = [ ox ()
2
= /aidA—k H?LxdA
N, Ot N,

oH
[ (22 )

/ <—2HA (1) —2Rc (v,v) + H* — 2 |A|2) dA.
N, H

Taking traces in the Gauss equation for N — M gives

R —2Rc(v,v) = Ry + |A]? — H? = 2k + |A|” — H?

where « is the Gaussian curvature of N. This gives us

d 1 2
— H?dA = —9HA | = 2k — |A|I* — :

15



Now note that

AP = M+
= 1(>\ X2)? + 1()\ + X2)
- 2 1= A2 2 1 2
1 1
= —H?
20\1 A2)? +3

so we can integrate by parts to get

d 1 1 |
— H?*dA = —2HA [ = 2% — = (A — A\g)" — —H? —
dt [y, /Nt < <H) e 0\1 2) 2 R)

[ o /NTHZ /(IDHI L - e+ )

dmx (Ne) — 5 H?
N,

IN

where we used the Gauss-Bonnet formula and the non-negative scalar curvature of M. For con-
nected N; we have x (N;) < 2 and therefore

a4 H?dA < 87 - [ ).
dt N 167 N
This implies
d 1dR (N, 1 N;) d 1
—mpy (N,) = LdR (N) 1-— [ H? +R( ) 4 1-— [ H?
dt 2 dt 167 Jy, 2 dt 167 Jy,
1 1
§mH (Nt) — §mH (Nt)
so t — mpy (N;) is non-decreasing. O

2.4 Hawking Mass Asymptotics

Proposition 2.6. For asymptotically flat spacetime with ADM mass m we have

lim my (0B,) =m

T—00

where OB, are the coordinate spheres in the asymptotically Euclidean coordinates.

Proof. We will prove this for the case where the metric is conformally flat to first order; i.e.
g=(1+ m/2r)4 o0+ 0 (7“_2). Changing to the associated spherical coordinates (see Appendix A),
the metric takes the form

(1+ m/2r)4 O (1"72) o (r ) 0] (7’ )
g= r2sin? 0 (14 m/2r)* +1 o(r7') 0O() 0(1)
r? (1—|—m/27“)4 O(T_l) O(1) 0(1)

The area form induced on 0B, by g is

dA = (rsind (1 -+ m/2)" +0 (1)) do A d;

16



so the area of 0B, is

A, / (7«2 sind (1 +m/2r)* +0(1)) dfdyp
OB,

r? (1 —I—m/2r)4/ sin OdOdyp + O (1) dfdy
OB, OB,

= 4w (14+m/2r)" +0 (1)

since 6, p range over the domain (0,7) x (0,27) for every r; so if the O (1) term is bounded by
C then its integral is bounded by 272C. Applying the Gram-Schmidt algorithm to the frame
{09, 04,0, } gives

v = (1 —m/r+ 0O (7“_2)) O, + 0O (’I“_3) Op + O (7“_3) Op-

Computing the Christoffel symbols in the original asymptotically Euclidean frame gives (see Ap-

pendix C)
i i 2 4m -3
H:&-V +Fijyj:;77,,72+0(r )
We can now compute
A, 1
my (0B,) = 1-— H?dA
167 167 Jop,

2m

_ %\/rz (1+m/2r) +0(1) (T +0 (r2)> :

When we take the limit r — oo we can drop all but the highest order (in r) terms in both
multiplicands, giving
1 2m

lim myg (0B,) = lim —Vr2— =m.
r—00 r—oo 2 r

O

Thus what needs to be shown is that the surfaces N, converge to the large coordinate spheres in
some strong enough sense to control the Hawking mass. Intuitively, we expect this to be true - any
deformation from a sphere is naturally smoothed out by the flow, since any “flattening” has less
curvature and thus will expand faster than the rest of the surface, thus catching up, and similarly
sharp extrusions have a lot of curvature and would fall back. We will see this is indeed the case

(in a more general form) in Section 3.

2.5 Rigidity
We can now prove the rigidity portion of Theorem 1.12 assuming the existence of a smooth inverse

mean curvature flow.

Proposition 2.7. If mapy = /A (No) /167 and M admits a smooth IMCF solution of con-
nected surfaces starting at Ny and asymptotic to large spheres, then (M,g) is isometric to the

Schwarzschild slice.

Proof. The equality implies that mp (N;) = mapas for all ¢, and thus that dmgy (N;) /dt = 0 for
all ¢; i.e. the terms discarded in the computations of Proposition 2.5 are in fact all zero. Firstly
we see x (IV;) = 2, so the N; are topologically 2-spheres. This implies R = 0 everywhere, and
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on each N; we have DH = 0 and A\; = \g; so the surfaces have constant principal curvatures
A1 = Ay = H (t) /2. By the evolution equation (2.3), Rc (v, v) is also constant on N¢, and thus the
Gaussian curvature kK = A\; Ay — Re (v, v) is constant on N;; so Ny is isometric to a round sphere.
Since the concentric spheres N; foliate M, we can write the metric on M using the flow time
coordinate along with those on the 2-sphere, which gives (noting that d; has length v = H~!)

g =H2dt* +dO?
where d27 is the round metric on S? scaled to have total area A (N,); i.e.

dgf = Mdgﬁ — Metdg?
4 4

We now make a change of variables r = e'/24/ % so that A (Nt(T)) = 47r?, which gives

-2 dmr® ’ 2 792
0

4H2
= 5 dr? + r2d02.
,
Since my (N¢) = mapwm, we have
T 1
=—(1—— H?dA
o= (1502 [ ataa)
and thus (since H is constant on N)
H2 o 16’/T (1 . QmADM>
A (Nigr)) r

Thus we have

—1
g= (1 — 2mADM> dr? + r2d0?,
T

the familiar Schwarzschild metric.
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3 Weak Inverse Mean Curvature Flow

3.1 DMotivation

We have established the Riemannian Penrose Inequality for the case where there exists a smooth
geometric flow solving (2.1) such that E; — S, with r — co as t — oo. However, it is not hard at
all to see that such a solution is not guaranteed.

Example 3.1. Consider a thin torus in R? parametrised by

x cos @ (1 + ecosp)
=] sinf(l+ecosyp)
z esinp
This has mean curvature
1+ 2ecosp

el +ecosyp)

For € < 1 thisis e 1 +cosp+ O (€) = ¢! > 0, so using it as an initial condition for (2.1), the flow
can initially be approximated by exponential growth of the tube radius e. However, as € increases,
the mean curvature will approach 0 on the inner edge of the (distorted) torus (cos¢ = —1); so

there is a singularity in the velocity and we cannot continue it.

Thus we must generalise our definition of the flow (i.e. move to a weak reformulation) if we
want global existence for general initial conditions and geometries. As the first step towards a
weak formulation, we recast (2.1) in terms of the level sets of some function:

Let u : M — R be a function (which one can think of as the “time” in the flow) and let the
surface at time ¢t be Ny := 0{u < t}. Then if u is differentiable and |[Vu| > 0, one sees that the

normal velocity is X = Vu/|Vu|? ; so since

we find that for regular points of u, Equation 2.1 is equivalent to

div (%) — |Vl (3.1)

One advantage of the level-set formulation (3.1) over the geometric flow equation (2.1) is that
it (at least partially) provides a mechanism to avoid the singularities - if we can devise a scheme
to have the surface jump “over” the singularities (in the example to jump from a torus to some
topologically spherical hull), then this can be represented as a plateau of the function u. Of course
this will require significant changes to the formulation, as (3.1) is not defined for Vu = 0.

Equation (3.1) is a degenerate elliptic PDE. The program of Huisken and Ilmanen was to define
weak solutions of Equation 3.1, prove the global existence of these solutions in the asymptotically
flat case and show the required results on myg still hold for weak solutions.
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3.2 Variational Formulation

Note. Throughout this section we will introduce the weak formulation of the IMCF, where we
must drop assumptions of smoothness of surfaces. For simplicity we will use notation consistent
with the previous discussion; but note that the actual definitions are more subtle. The changes are:
V,dV now refer to the n-dimensional Lebesgue measure, A,dA to the n — 1-dimensional Hausdorff
measure, H to the weak mean curvature and O to the reduced boundary. See Appendiz D for details.

The variational approach to weak reformulation of second-order PDEs on a compact domain
K is to find a Lagrangian £ : R x R® — R : (u, Vu) — L (u, Vu) such that the Euler-Lagrange

equations

MTA:
V6Vu T Ou

are equivalent to the original PDE. One then defines the action functional

(3.2)

Sg:A—>R:ub—>/K£(u(m),Vu(x))dx

for some convenient space of functions A C R¥. A weak solution is then defined as a local minimiser
of SX, and one finds that every weak solution that is C? is in fact a strong solution to the original
PDE. The existence of weak solutions is usually proven by endowing .4 with additional structure
(usually at least Banach) and applying the theory of functional analysis. There are then various
cases (e.g. linear elliptic PDEs) where the weak solutions are in fact guaranteed to be strong
solutions; this is regularity theory. (For example, a classic result is that every weakly harmonic
function is in fact analytic.) For our purposes, we will use A = Cﬁ;t (©2) where Q is the domain
of interest; i.e. the locally Lipschitz continuous functions, which (when restricted to a precompact
open subset ' so A’ = C%! (Q)) forms a Banach space when given the norm

(@) — u ()|

[|u|| = sup |u| 4+ sup
ety d(z,y)

We will follow the weak formulation of the IMCF and subsequent proof of the Penrose inequality
given by Huisken and Ilmanen in [1]. Equation 3.1 does not appear to have the form of the Euler-

Lagrange equation; so we instead “freeze” the |Vu| on the RHS; i.e. for a given u € A, define the

Lagrangian
L, (v) =v|Vu|+ |V, (3.3)
which has Euler-Lagrange equation
Vv
div| = | = . 34
() = o 34

We can now recover Equation 3.1 by setting v = v. At first this seems strange, but we will see
that we still have a minimisation principle. Call the action JX (v) := [} Ly (v, Vv) for compact
sets K.

Definition 3.2. A locally Lipschitz function u is a weak solution of the IMCF (or a “WIMCF
solution”) if for every locally Lipschitz v with {u # v} CcC K we have JX (u) < JE (v). uis a

subsolution or supersolution if this holds for v < u, v > u respectively.

If u is C?, this implies u satisfies Equation 3.4 with v = v; i.e. u is a strong solution; so we still
have a useful weak formulation of the problem. We restrict ourselves to compact sets because we

expect the function u (and therefore its competitors v) to grow unbounded as r — oo (indeed this

20



is necessary to conclude the main theorem!), so assumptions of global integrability are too strong.
The minimisation principle does not depend on the choice of K, as long as it contains the support
of u — v; thus we will often omit the K.

It is also simple to impose initial conditions:

Definition 3.3. A WIMCF solution u satisfies the initial condition given by a surface Ny = 0FEy C
M if By = {u < 0}.

Since the level sets play such a central role, it becomes convenient to cast the problem in terms
of the sub-level sets E; = {u < t}, using the new functional

jf(E):A(aEmK)—/ |Vl .

ENK

This functional is lower semi-continuous with respect to convergence of sets in measure; i.e.
if V(E,AFE) — 0 then 7, (F) < liminf,, J, (E,). (This is a straightforward consequence of
Prop D.7.) It also satisfies the inequality

Ju(ENF)+ T, (EUF) < J,(E) + Ju(F) (3.5)

since the same inequality holds for the surface area and equality holds for the [|Vu| term. We
will often omit the intersections with K.

The following proposition recasts the solution criteria in terms of 7,,.

Proposition 3.4. u minimises J, amongst v satisfying {u#v} CC K <= for each t, E;
minimises J, amongst all sets F satisfying FAE, CC K.

Proof. (<=) For u,v € C2! (Q) define E;, = {u < t}, F; = {v < t}, and let (a,b) be a bounding

loc
interval for the image of u and v on K (guaranteed by compactness of K and continuity of u,v).

Then we have by the co-area formula (see Appendix D)

/U|Vu|+/ |V
K K

b
/U|VU|+/ A(OF,) dt
K a

where we first restricted the second integral to K\ {|Vv| =0}, where {v =t} = 0{v < t}. Now
write

Ju (V)

v = —(b—v)+b
b
= [ e+

This yields
b
5= [ (a0R) = [ xini9u) e+ [ v, (36)
a K K

But {v < t} N K is exactly F; N K, so we recognise J,, (F}):

T (v) :/abju(Ft)dt—H)/K|Vu.

It 7. (Er) < Ju ({v < t}) for every competitor v, then we have fab Ju (Ey) < fab Ju (Fy) and there-
< Ju

fore J,, (u) (v); i.e. v minimises J,.
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(=) The other direction is more subtle - we will show that if « is a supersolution then each E;
minimises 7, on the inside (with respect to competitors F' C E;), and likewise for supersolutions
E; minimises 7, on the outside (with respect to competitors F' D E}).

First, let u be a supersolution, and choose any F' C Ey, for any time ¢, such that FAE,  is

compact. Order the collection
{A is a finite-perimeter subset of Ey, |F' C A, J, (A) < J (F)}

by the relation A < B if and only if A C B and J,, (4) > J, (B). For any chain A,,, we have by

lower semi-continuity of 7,
Tu <U An> < liminf 7, (A,) < Ju (A;) V)

so |J,, Ay is an upper bound for the chain. By Zorn’s Lemma we therefore have a maximal element;
i.e. an F' C Ey, such that 7, (G) > J, (F’) whenever G D F’. Now define

to on Ey \F’
v =
u  elsewhere

so that
E; t>1p

F = .
E.NF' t<t

While v is not C’loo’i and thus we cannot immediately use it as a competitor v > wu, it is locally
bounded and of locally bounded variation; so J, (v) is well defined (if we interpret [ |Vu| as the
total variation). Approximating it with smooth functions v; — v on K such that |Vuv;| — |Vy|
in D' weak-* and applying the fact that u is a supersolution gives J, (v) > J, (u) and therefore
(using Equation 3.6)

b b
/ T () dt > / . (Ey) dt.
For t <ty we have (using (3.5) and the maximality of F”)

and therefore

(We obviously have equality for ¢ > t5.) Thus we must in fact have J, (Fy) = J, (E;) for a.e.
t € [a,b]. Making this substitution in (3.7) gives

Ju (B UF') < J, (F')
for almost every t; so taking the limit ¢ ¢y, and applying lower semicontinuity gives
ju (Eto) S ju (F/) S ju (F)7

i.e. Iy, minimises [, on the inside.
Now assume u is a subsolution and consider any F' D E;g = {u <t} for any ;. Then using
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the exact same argument as before (just flipping the direction of set inclusion in the definition of
<) we can pass to an F’ C F with 7, (F’) < 7, (F) such that for every G satisfying E;} C G C F’
we have J, (G) > J, (F'). Defining v so that

E,; t <tp
E;UF t>t

F, =

and using the same argument based on (3.6) gives J, (F:) = J. (E:) for a.e. ¢, so we have
Ju (EyNF") < T, (F). Passing to the limit ¢ \ t¢ using the lower semicontinuity gives

ie. Ef = {u<to} =), F¢ minimises J, on the outside. Since E;” — Ey, locally as t /o,

we have J,, (Ey,) < liminf; ~, J, (E{). Given an F D E,,, we have F D E; for all t < t; and

therefore 7, (E;r) < Ju (F); 80 Ty (Eyy) < Ty (F); ie. Ey, itself minimises 7, on the outside.
Thus if v minimises J, amongst all competitors v then each F; minimises 7, amongst all

competitors F. ]

The relationship between 7, and surface area means that the following definition will come in
useful when determining the geometric consequences of the minimisation principle - in particular,
the theory of minimising hulls will allow us to investigate the behaviour of the flow at the jumps.

Definition 3.5. A set £ C M is called a minimising hull if it minimises surface area on the
outside; i.e. if A(OF) < A(OF) whenever F' D E. It is called a strictly minimising hull if equality
holds only for F' = E a.e.

For a given set E, there is a unique smallest strictly minimising hull E’ containing E given by

the intersection of all such strictly minimising hulls. Call E’ the strictly minimising hull of E.

When OF is C?%, OF" is C*! and OE’\OE is C*° [1]. Therefore any smooth variation of OE’
supported inside OE'\OF will stay inside the minimisation domain (i.e. be the boundary of a set
F D E) for small enough parameter, giving H =0 on 0E'\JE.

Proposition 3.6. For a weak IMCF solution u:
1. each By = {u < t} is a minimising hull;
2. each E;" = {u < t} is a strictly minimising hull for ¢ > 0;
3. B/ = E/}; and
4. A(OE,) = A (OE}).
Proof.

1. Since E; minimises 7, we have

A(DE,) — /

E

vl gA(aF)—/ vl
F

and therefore when F' D E,
A(OFE:) < A(OF).
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2.

We saw in the proof of Prop 3.4 that E; also minimises 7,, so the same proof works. To
show it is strict, assume F' D E;" and A (0F) = A (9E;"). Then we must have

/ |Vu| =0,
F\Ef

thus w is constant on each connected component of F\E; . Since M is connected, each
component of F\E;" has closure touching {u = t}, so by continuity of u, u =t on F\E; . By
the definition of E;" this implies F' C E;", so F' = E;".

Since E;f O E, is a strictly minimising hull, we have E;” > E, by definition; so [+ VUl =
[z [Vu| since E;"\E] lies in the level set {u = t}, where |Vu| = 0 almost everywhere. This
implies A (OE;") < A(OE}) (since E;” minimises J,) and therefore E;" = E; since Ej is

strictly minimising.

Both E; and E;” minimise 7, so J, (E;) = J., (E/); and [ [Vu| = Ji; IVl as in the proof
of 3, so this means A (0E,;) = A (OE}'). 4

O

With these facts established, we can now easily prove:

Corollary 3.7. The Geroch monotonicity holds at jumps; i.e. mpy (E:r) >mpy (Ey).

Proof. We have A (0F,;) = A (OE;") by Prop 3.6.4. Since E;" = E; by Prop 3.6.3, the theory of

minimising hulls gives

Thus

0 on 8Et+\(9Et

+ = .
0B, HaEt on 8Et+ n 8Et
A (9E;) 1
Ef) = (| —2 1 — H?
ma (OF]) 167 167 Jop OB
_ JAWE) (1 72
167 167 Jop+nom,
A (OE;) 1 )
1—— H = OFy).
= 167 167 Jop, OF; mu (OE:)

O

We now present a simple example of the weak flow, with an analysis of the jumping phenomenon

and the behaviour of the Hawking mass.

Example 3.8. Two spheres. Let M be Euclidean 3-space and consider the initial condition

Ey = B,, (-1,0,0) U B, (1,0,0) for some ry < 1; so the initial surface consists of two spheres

of radius rg with centres a distance 2 apart. The mean curvature of a sphere of radius r is the

constant 2r—!; so we have

A (O, 92
mu (0Fo) = (16770) (1 - 167rr§A(aE°)>
_ _M
- -2
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Initially, the flow will proceed as it does for a single sphere: exponential growth of the radius
. t)2
r = Tp€

E; = B, (~1,0,0) U B, (1,0,0), t < tjump-

During this period of smooth flow, the Hawking mass will decrease as my (0F;) = —r/2! This
is a reminder of how important the connectedness of N, is for the Geroch monotonicity to hold.
The smooth flow would self-intersect once r = 1; but our weak flow must jump before this time,
as the two touching spheres have surface area 87 while being contained in a rounded cylinder with
area 2 (27 + 2mw) = 8, so0 a slight pinching of this cylinder would decrease the area and contradict
Proposition 3.6.

Let us now attempt to find the actual jump time ¢jump and the resultant minimising hull
8E¥ - FrOmM the rotational symmetry, we know the surface must remain a surface of revolution
about y = z = 0; and we know that any new part of the surface must be minimal. Thus the new
portion of the surface must be a catenoid; so we will end up with a catenoidal bridge between two
spheres (something like a dumbbell; see Figure 3). Since the two-spheres configuration also has a
mirror symmetry, the catenoid will be centred on the origin. Thanks to the spherical and reflection
symmetry, we need only consider a cross-section z = 0,z > 0; the spherical and catenoidal surfaces
will then be represented in general by the revolutions of the functions

sr(z) = 12— (z—1)°

1
— coshazx.
a

o
S
—

8
N

Il

For the two surfaces to join together into a C' surface (which must occur since the strictly min-

imising hull is C1'!), we need some point z = xo where

sr (20) = ¢a (%0) , 8, (20) = g (%0) - (3.8)

For small r this has no solution (i.e. there is no catenoid spanning the gap between the spheres); but
for each r in some interval [rg, 1] there is a unique solution (zg, a) that satisfies these constraints.

The area gained during the jump is

JA(r) = Area of catenoidal section — Area of 2 spherical caps
x0 Zo
= 2 [27r/ cq () /14 ¢, (z)2de — 27r/ sr(x)\/1+ sh (x)Qdm] .
0 1—r

The surface will jump at the first time when 6A (r) < 0; i.e. when the two spheres have area
greater than or equal to the dumbbell. The constraints (3.8) are not easily solved analytically; but
using a numerical root-finding algorithm (see Appendix C), we can produce approximate values of
0A - see Figure 1. Applying root-finding to the function JA then gives the jump radius

roe e/ = riym, ~ 0.862.

The surface will gain some Hawking mass during the jump (we know that area is preserved, and the
) <.
As the flow continues out to infinity, the Hawking mass will (by the results of the previous section)

spherical caps we lost had a positive contribution to [ H?), but we still have mpy (8E{;’ump

increase with limit mapy = 0.
Figure 2 shows cross-sections of the flow at regular times, with the final surface shown being
E+

tjump *
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3.3 Elliptic Regularisation

The existence of weak IMCF solutions is proven using an approximation scheme known as Elliptic
Regularisation. We move up a dimension and consider translates of the graph of w in M x R: the

NE () = (ﬂ‘(gf‘t) .

These are level sets of the function U : M x R — R given by

surfaces

U((E,C): U(xi_g

and therefore (substituting « — U in (3.1) and simplifying) Ny is an IMCF if and only if

E€ (u) = div Ve —\/|Vu)® + e =0. (3.9)
\/ | Vul® + €2

This new equation is non-degenerate elliptic for € > 0 (we no longer have a blow-up when Vu — 0).
We will show there exist smooth solutions u¢ of (3.9) on domains that exhaust M as ¢ — 0, with
u® remaining locally uniformly bounded. We can then take a convergent subsequence and pass
to the limit ¢ — 0, giving a weak IMCF on M x R whose level sets are vertical cylinders (i.e.
Ny = {z € M|u () =t} x R). Intersecting these cylinders with M will give a solution to the
original weak IMCF problem. We assume the existence of a smooth weak subsolution v with
Vv # 0 everywhere; these always exist in asymptotically flat manifolds (consider functions of the
form C'lnr in the asymptotic region). Let Fy = {v < t}.

Lemma 3.9. (A priori estimates for reqularised solutions). [1, p384] For every L > 0 there is an
€(L) > 0 such that for all € € (0,e(L)] and all 7 € [0,L —2]: If u solves (3.9) on Qr = FL\Ey

with u =0 on 0Ey and uw =7 on OF], then u satisfies the estimates

u> —e in Qp,

u>v+7—L in Fr\Fo,

|Vu| < max (H,0) + € on OFEy,

|[Vu| < C (L) on OFy,

[ully,, < C (e, L) and
|Vu (z)| < po X |Vu|+e+C/r

for any r such that B, (x) is diffeomorphic to a Euclidean ball (B,,0) such that the metric com-
ponents satisfy |gi; — di;] < 1/100, |gs5.x| < 1/100r.

Theorem 3.10. For any L > 0, there is an € > 0 and a solution of (3.9) such that u =0 on JEy
andu=L—2 on{v=0L}.

Proof. We study the related problem with modified boundary condition v = 7 on {v = L}, where
0 <7 <L-—2. Define

. Vw B
F — F€ =d —_— | —e\/1+ |Vl
(w, €) (w) iv - € + |[Vw|%;

1+ |Vuwl
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then u solves (3.9) if and only if F' (u/e) = 0. For the case 7 = 0, we consider F' as a map of
Banach spaces
F:Cye (Qr) x R — C%* ()

where Q, = {v < L} \E;. We have a solution F (0,0) = 0, and F is differentiable in the C3**
directions at O:

d
doFO (w) = %’t:oFO (tw)
d tV d
= Auw;

)

i.e. the linearised version of F(w) = 0 is simply Laplace’s equation. Since A : Cg;a (QL) —
OO (Q L) is an isomorphism (i.e. the Dirichlet problem has a unique Hélder solution for Holder
data), the Implicit Function Theorem for Banach spaces tells us there is an interval (—eg, €g) and a
function S : (—eo, €0) — Cg'* (1) such that F (S (¢),¢€) = 0 for every ¢ € (—eg, ); ie. for 7 =0,
there is a solution F'¢ (u) = 0 for some € > 0; fix such an e.

We must now extend this to 7 # 0; i.e. to more general boundary conditions. Let I be the set
of values 7 such that (3.9) has a solution with u = 7 on 0F. We just showed 0 € I. Take solutions
ur; with 7; € IN[0, L — 2] an arbitrary sequence converging to 7; then the uniform Hélder estimate
in Lemma 3.9 implies that (passing to a subsequence) we have local uniform convergence u,, — u
(since the Arzela-Ascoli theorem implies bounded sets in C% (Q) are compact in C (Q)). Since
E* is continuous as a map C? () — C° (Q), the limit satisfies E€ (u) = 0; and since u,, = 7; on
the outer boundary we have v = 7 on the outer boundary. Thus 7 € IN[0,L — 2], so IN[0, L — 2]
is closed. To show I is open we use the same linearisation method as before, this time expanding
about an arbitrary u (not just u = 0). Consider the operator

GT . (C*” (QL) — e (QL) x C%* (0)
G(u,7) = G (u):=(E(u),ulpq, — TXoF,)

so that u is a solution with outer boundary value 7 if and only if G (u) = 0. Clearly dG7|, (w) =
(dE€|, (W) ,wlaq, ). Since E€(u) depends only on Vu, the linearisation dE€|, (w) = 0 is of the
form

div(M (z) - Vu)+V (z) - Vo =0

for some matrices M and vectors V; so the maximum principle for linear elliptic PDEs implies
that the linearisation dF (w) = 0 has only solution w = 0; i.e. dF is injective. The existence
and regularity theory for elliptic PDEs guarantees solutions for the linearised equation, so dE is
an isomorphism. Applying the Implicit Function Theorem as before gives solutions with outer
boundary values in a neighbourhood about 7; i.e. I is open. Thus I N[0, L — 2] is both closed
and open when viewed as a subset of the space [0, L — 2] (with the subspace topology from R), so
I > [0,L —2]. Thus we have a solution with the desired boundary condition u = L—2 on 0F;. O

Now that we have solutions to the regularised equations, we need to show that we can take a
limit and obtain a weak IMCF solution on M.

Theorem 3.11. If u; are weak IMCF solutions on open sets §; such that u; — u and Q; —
locally uniformly and supy |Vu;| is eventually bounded for each K CC Q, then u is a weak IMCF
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solution on Q.[1, p375]

Theorem 3.12. For any precompact smooth open set Ey, there exists a locally Lipschitz weak

IMCF solution with initial condition Eg (assuming the existence of a subsolution v as before).

Proof. Take a sequence L; — oo and a corresponding sequence ¢; — 0 such that for each j, we
have a solution u; of (3.9) with outer boundary condition u,|sr, = L—2. Combining the estimates
for |[Vu|, we find that for large enough j (so that B, (x) does not intersect OFT,;)

[Vuj (2)] < max max(H,0)+2¢+C/r < max max(H,00+C+C/r
OEoN By () OEoN By (z)

i.e. the u; are equicontinuous on compact subsets. Thus by Arzela-Ascoli we can pass to a
subsequence and obtain local uniform convergence u; — u, with u satisfying the same gradient
estimates. From the first estimates in Lemma 3.9 we know that u is non-negative and that v — oo in
the asymptotic region (since the subsolution must). Since the regularised solutions are in fact strong
IMCF solutions (with U; (z,() = (u; (z) — ¢) /¢;) on M x R, they are also weak IMCF solutions
and therefore the gradient estimate and Theorem 3.11 imply that their limit U (z,{) = u (x) is a
weak IMCF solution on M x R. If U describes a smooth flow we are done - since the level sets
of U are vertical cylinders, the principal curvature in the vertical direction is zero so the mean
curvature is unchanged when we intersect with M. Since the velocity and normal vectors would
also be unchanged, the smooth IMCF equation would be satisfied. For the general case, take any
variational competitor v and let V (z,¢) = v (z) ¢ (¢) where

1 € [0, ]
(+1 € (-1
PO = S+1-¢ ge(ss+1)
0 C¢(-1,S+1)=:1Isg

is a Lipschitz cutoff function. Since U is a weak IMCF solution we have Jy (U) < Jy (V); i.e.
/ Vu| +u |Vl g/ VV|+V |[Val g/ |V0] + || + vé |V
KxIg KxlIg KxIg

for any K containing {u # v}. In the limit S — oo, the interval [0, S] dominates the integral after
we divide by Sji.e.

1 1
s vl +ulal s 5 [ Vel 4oVl
S KXIS S KXIS
so we have [ |[Vu| +u|Vu| < [, [Vv| 4+ v|Vul; ie. uis a weak IMCF solution on M. O

Thus we have existence of the desired flow with N; = 9 {u < t}.

3.4 Monotonicity

We have already made an argument for the monotonicity in the weak case - on surfaces with
Vu # 0 everywhere we have smooth IMCF and thus monotonicity by Proposition 2.5, and at
jumps E; — E;" we have monotonicity by Corollary 3.7. If we could somehow determine that
the jumps occur discretely in ¢, then we would have a watertight proof; but it is not immediately
obvious how to do this. We instead will prove the monotonicity using the regularised solutions

from the previous subsection.
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Theorem 3.13. For a weak IMCF solution, the level sets Ny satisfy
1 2 2 >
mpyg (Ns) >m (Vy) )+ — 2D10H + (A1 — X2)” + RdA | dt;
0 (V) = o (N, e [ VAT (1 ()4 = [ 21D log B+ (= )

for all s > r > 0. In particular, the Geroch monotonicity dmyg (OF;) /dt > 0 holds where mg (Ny)
is differentiable and N; are connected.

Proof. For any ¢ > 0, let Nf be the graph of (u¢ —t) /e in M x R where u. is a solution to the

regularised equation (3.9). Since Ny is a smooth IMCF, we have by the computations in Proposition

2.5:
d 2 _ 1 2 2
= NEH /< QHA( > 2Re (v,v) + H? — 2|A| >dA

where dA now denotes the 3-dimensional hyperarea. By the existence proof for (3.9), we have
sequences L; — 00, €; — 0 such that th := N,;” = N; x R, and the mean curvature H > 0.
We would like to take the limit of the integral equation above; but clearly the integrals will not
be finite (since IV; are infinite vertical cylinders). Since what we are actually interested in is the
2-dimensional integrals after intersecting with M, we multiply by some cutoff function ¢ € C? (R)
with ¢ >0, [ ¢ =1, supp¢ C [a, b] similarly to in the proof that the cylinder cross-sections solve
the weak IMCF. Fix a T' > 0 and move far enough along the sequence that supue = L—2>T+5b
and ¢ < 1 so that ONf (which is nonempty due to the regularised solutions existing only on a
compact domain ) is disjoint from Q = M x [a,b]. Using (2.3), we have

4 ¢H2:/ o —2HA 1 — 2Re (v, v) — 2|A? dA+H28¢dA+¢H2LatdA
dt [y H ot

Since 0; = v/H and Ly, dA = dA, this becomes

d 1
it y; oH? = /; {qﬁ (QHA (H> —2Rc (v,v) — 2|A]> + H2> + HV,,qS} dA.

Integrating by parts and then integrating this over a time interval [r, s] C [0,7T] we arrive at

. PpH?*dA = ¢H2dA+ / / [ (

where D is the covariant derivative on the hypersurface.

+2Rc (v,v) +2|A)? — dAdt

) L o{DODH) o

H

(3.10)

Huisken and Ilmanen derive estimates for all of the quantities in the above integrals, with
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resulting limits (after passing to some subsequence):

/ OH?dAdt — OH?dAdt
th N¢ xR

/ pH?*dAdt — / / GH?dAdt
s N} s N xR

// |HV,¢|dAdt — 0

s NtJ

// (Do, DH) 0 )

s Nf H
I f/ ¢|DH|2dAdt > // ¢|DH|2dAdt
1m in

j r JNY H? = Jr Jnxr T H?

J—00

liminf// A dAdt > // |A]? dA dt
J=o Sy JNI r J Ny xR

(The second fundamental form of a C' set can be defined, and behaves as usual including the

Gauss-Bonnet theorem for k = det A.) These are all intuitive remembering that V¢ is vertical
while the geometry approaches vertical symmetry; see [1, Section 5] for the details. Thus we can
take limits of (3.10), giving

v DH[?
/ pH?dA < / pH?dA +/ / é 2‘ 2‘ +2Rc (v,v) + 2|A]> — H? | dAdLt.
N xR N, xR s N¢ xR H

Now that our integrals are over cylinders, each integral splits as

/vaxR¢(C)f(x)dA(x)dC:/stdA/R¢:/stdA

since the geometric quantities f have vertical symmetry and we chose [¢ = 1. (Here dA is once

again the 2-dimensional surface area measure.) Thus we have

/HQdAg/ H2dA+// 2
Ng N, s Ny

Similarly to the smooth case, we have

‘ 2

|D 2
E +2Rc (v,v) + 2|A|" — H? | dAdt.

1 1
2|A]* 4+ 2Re (v,v) — H? = 5()\2—)\1)2+R—2/<;+§H2

and thus applying the Gauss-Bonnet formula | N, B = 2mX (Vy) (which is valid by approximation
of Ny by C? surfaces [1]) and noting |[DH|/H = |Dlog H| since H > 0, we have the desired result

after some manipulation. O

3.5 Asymptotics

The asymptotic behaviour of mpg (N;) can be analysed using a blowdown argument. For a weak
IMCF solution u and a A > 0, the geometry is scaled as Q* = {\z|z € Q}, ¢* (z) = A2 (z/)) and
u? = u (z/)\) where Q is the asymptotically flat end of M (so it is covered by a single asymptotically

flat coordinate chart with respect to which we perform the scalings).

Lemma 3.14. There are some constants cx — oo such that u (x) — cx — (n —1)log|z| loc-
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ally uniformly; i.e. modulo uniform relabellings of the level sets, the solution converges to the

exponentially expanding spheres on R™.

Once this is established, we have convergence of the scaled-down level sets Ntl/r(t) — 0B (0)
for r (t) such that A (N,) = 4xr2. The following theorem is then proven by writing N;/"") as a
graph over dBj (0), linearising the expression for the mean curvature of N; and comparing to the
(scaled-down) ADM mass integral. (See [1] Lemma 7.4 for details.)

Theorem 3.15. If u solves the weak IMCF, then lim;_ oo mpy (OE:) < mapwMm-

3.6 Rigidity

By Theorem 3.12; there is a solution Ny = dF; = 0 {u <t} of the weak IMCF starting at the

horizon Ny, with mg (Ny) increasing by 3.13 and lim;_, oo mpy (V) < mapm by Theorem 3.15; so

we have mapm > mpg (No) = 4/ Al(é\:f) since Ny is minimal. Thus we have proven all of Theorem

1.12 except for the rigidity claim. The argument is very similar to the smooth case after some

initial analysis.
Proposition 3.16. If mapy = /A (No) /167 then (M, g) is isometric to the Schwarzschild slice.

Proof. By Theorems 3.13 and 3.15, we must have my (N;) = mapwm for all time. For equality to

hold in Theorem 3.13, we must have
/ |Dlog H|* =0
N

for almost every t¢; thus H is constant on N; for every t by Proposition D.8 (taking the limit
N, — Ny, s /t). If there was a jump N, # Ny, then since my (N;r) = mpg (Ny), the calculations
in 3.7 imply that H = 0 on N;\N;". But since H is constant on Ny, this implies N; is a compact
minimal surface (that does not touch Np), contradicting the fact that Ny is the outermost horizon.
Thus N; = N," and H > 0 for all ¢, so the flow can always be continued smoothly. The result now
follows by Proposition 2.7. O
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4 Generalisations and other applications of IMCF

4.1 Multiple Horizons

It is physically reasonable to expect that if there are multiple black holes in the universe (i.e. OM
is the disjoint union of more than one topological 2-sphere), then the inequality should still hold
for A (OM); this is the full Penrose inequality of Theorem 1.11. While the weak flow of Huisken
and Ilmanen can be generalised [1, 6.1] to this case with the initial condition being one connected
component Ny of M and the flow jumping over the other components at appropriate times, all
it proves is /A (Np) /167 < mapm. If we try to use all of OM as our initial condition, then
we do not have connectedness and therefore the monotonicity fails. We could instead start the
flow with one connected component of the boundary and attempt to account for the areas of the
other components by a more careful analysis of the jump times; but this is doomed to fail, as the

following counterexample shows.

Example 4.1. Consider Ny a tiny sphere in the Schwarzschild slice with centre a large distance
from the origin. Then the Hawking mass of Ny is tiny (since it is zero for Euclidean spheres),
and the flow N; will proceed smoothly for some finite time before jumping to encompass the
Schwarzschild horizon. Since the spheres IV; are not the symmetric spheres of the Schwarzschild
slice, the rigidity theorem implies that my (N;) is strictly increasing in the initial smooth flow.
Thus we have mg (N7) > 0 for T the jump time, and my (N;) < mapy by a similar argument
(mp (Ny) must strictly increase while flowing out to infinity by rigidity). Therefore the mass mapwm
of the black hole is not just picked up in the jump that encompasses the singularity (as is the case
when we start the flow on the horizon); it is somehow non-locally distributed, with an increase of
only my (Nf) — mpg (Nr) < mapw at the jump time.

The generalised inequality /A (OM) /16w < mapm was eventually proven by Bray [12] by a
different method, with the Positive Mass Theorem being a key ingredient in the proof. However,

this does not obsolete the inverse mean curvature flow, as we will see in the following subsections.

4.2 Penrose Inequality with Charge

A natural extension of the Penrose inequality is to the case of a charged black hole. The Schwarz-
schild solution saturates the Penrose inequality, so to find a candidate bound for the horizon area we
should look to the analogous solution for the Einstein-Maxwell equations - the Reissner-Nordstrém

slice L
2 2\~
g= (1 -2y Q> dr? + r2dQ?
r r

where @ is the total charge and we use units where 4weg = 1. As in Example 2.4, we can compute

the mean curvature by

2
L dlA(S,) _2 [ 2m Q2

H(Sr) = WT r r 72

Solving for H (Sg) = 0 gives us R+ = m + y/m? — @2, so the slice has outermost horizon

Ry =m+y/m? - Q2. (4.1)
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The Hawking masses of the coordinate spheres are

R 1
mH(SR) = <1— H2dA>
2 167 /g,
R 47R? 4 om Q2
—QQ*HWWG‘R+W»
2
I
2R

2

Since the perturbation to the Schwarzschild metric is at order r—=, we still have mapy = m.

Writing this in terms of the outermost horizon area A, = 47rRi and the total charge @ gives

A
mapwm (Reissner-Nordstrom) = \/167; +Q? \/AT .
+

We see from this example that even in the Reissner-Nordstrom case, the Hawking mass must strictly
increase as the test surface flows outwards from the horizon to the asymptotic region, unlike the
uncharged case where the Hawking mass is constant while traversing Schwarzschild space. This
reflects the scalar curvature term 2 (|E\2 +|B \2) contributed by the electromagnetic field. Thus
we must not discard the scalar curvature term in our monotonicity calculation if we wish it to hold

for the charged case.

Theorem 4.2. If (M, g) is an asymptotically flat manifold of ADM mass mapm equipped with a
vector field E and a positive real Q such that

Qsi/wmmm
47('2

for any topological 2-sphere ¥ containing the outermost horizon and R > 2 |E|2, then

A+ 2 ™
> /=t [
MADM (M) > Tom +Q A+

where Ay is the area of any connected component of the outermost horizon of M.

Note. The conditions on E mean physically that there is a total charge of at least @ inside the
horizon, and the scalar curvature condition means that the local energy density is at least that
contributed by the electromagnetic field, which is R = 2 (|E\2 +|B \2) in the electrovacuum case.

Proof. Exactly as for the uncharged case, but with a more careful calculation of the evolution of
mpy (N;). We estimate the scalar curvature term using the Cauchy-Shwarz and Holder inequalities:

RdA > 2/ |E|” dA
N

Ny
> 2/ (E,vn,)? dA
Ny
2(f, (Bovn) dA)2
- AN
2
= AN (17Q)*
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and thus using Theorem 3.13 with r =0, s — oo (remembering x (N;) < 2) we find

1 [ 1 1 ) )
m > mpyg (N +7/ A (N, (1— N, +7/ 2|Dlog H|” + (A1 — A +RdA)dt
ADM 1 (No) Ties ),V (Nt) 2X( t) 167 Jy, |Dlog H|” + (A1 — A2)

A 1 >
> i+ —— | VAN, [ RdAdt
- 167T+(167r)3/2/0 <t)/zvt
A

1 9
> + /
167 (16m)%2 Jo \/A(Nt)(
2 o0
s AL @VT [T gy
16m  2./7Ay Jo

_ A+ 2 ™
N v167T+Q VAL

47 Q)? dt

O

Bray’s proof admits no such simple generalisation. In fact, the Penrose inequality with charge
and disconnected horizon is false - see [15] for a counterexample. Thus the IMCF proof of the

Penrose Inequality still has merits over Bray’s approach.

4.3 The Yamabe Invariant of RP3

Another application of the IMCF arises in the study of the Yamabe Invariant, a (smooth) topolo-
gical invariant arising from the study of conformal transformations in differential geometry.
Throughout this section, let M be a compact smooth n-manifold, n > 2.

Definition 4.3. For a Riemannian metric g on M, the Einstein-Hilbert energy E (g) is

[y RAV

E(Q)ZW

where R, dV are the scalar curvature and volume forms induced by the metric g.

Definition 4.4. The smooth Yamabe invariant or o-invariant of a smooth manifold M is
o (M) =sup{Y (g9)|g is a metric on M}

where

Y(M,g):Y(g):igl]fE
g

is the conformal Yamabe invariant of the conformal class [g] = {metrics conformal to g}.

An important question is whether or not the infimum Y (g) is actually attained. A necessary
condition for E (go) = Y (go) is that g satisfies the Euler-Lagrange equation for the functional £
(i.e. go is a local minimum of E). By definition, [g] is the set of metrics § such that § = u*/(*=2)g
for some smooth function v on M. The scalar curvature of g is

R=u" /(=21 (4.2)
where )
n—
LO = Rg - 4mAg
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is the conformal Laplacian. In terms of u and the geometry of g, the energy of g is therefore (noting
dVz = dEtidV = u2?"/("=2) and integrating by parts)

det
BBy - —dntondv (R timeda)av ] (R 455 Vuf) v
! ’ (f UQ”/("*Q)dV)(WQ)/" (f u2n/(n72)dv)("*2)/n (f u2n/(n72)dv)(n72)/n
(4.3)

Thus our question is whether or not E; has a minimum over C*° (M). The Euler-Lagrange equation
(a necessary condition for a local minimum) of E, is
Lou = \u("t2)/(n=2)

where X\ = E, (u) / |[ul[%,?; so if E, is minimised at gy = ug/(nd)g then (by (4.2)) go has constant
scalar curvature. The existence of such a ug is a known as the Yamabe Problem, conjectured and
thought to be proven by Yamabe [16]; however, his proof had a major flaw. The work of Trudinger,
Aubin and Schoen eventually culminated in a correct proof [17]; so we know that in each conformal
class [g], Y (g9) = E (go) for some gy with constant scalar curvature.

The supremum o (M) is defined due to the following lemma. The proof involves constructing
a metric conformal to g which looks like gy over most of S” in a neighbourhood of a point, and is

very small everywhere else in M.
Lemma 4.5. Y (M, g) < E(go) where go is the standard round metric on S™.[18]
A good starting point for computing the invariant is the following theorem.
Theorem 4.6. (Obata [18, 19]). If g is Finstein (Rc = kg for some constant k) thenY (g) = F (g).

In the two-dimensional case, the scalar curvature is twice the Gaussian curvature so we have
E(g9) = / 2K dA = 4y (M)
M

which is independent of g and therefore o (M) = 4wy (M); i.e. the Yamabe invariant reduces to
the well-studied Euler characteristic.

Much more interesting is the three-dimensional case, which is where we will find an application
of the IMCF. The starting point is the example S3, where (by Lemma 4.5) the standard round
metric (from the embedding S < R* with radius 1) achieves the maximum. Since it has constant

scalar curvature 6 and volume 272, we see that
/. g3 6dV
(Jss av)

For general 3-manifolds we have o (M) < oy; but finding exact values is difficult. The Yamabe

o1 =0 (5%) = =6 (2n2)*".

invariant o (RPP?) was finally computed by Bray and Neves in 2004 using the weak IMCF of Huisken
and Ilmanen along with the relationship between the conformal Yamabe invariant Y (g) and the

optimal constant for the Gagliardo-Nirenberg-Sobolev inequality.
Theorem 4.7. o (RIP’3) = gy 1= 67%/3.

Proof. We give a brief sketch; see [18] for the full details (including a more general classification
result).
We have o (R]P’3) > o9 by the theorem of Obata [19]. Thus what needs to be shown is that

Y (g) < o3 for some g in each conformal class of metrics on RP3,
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Consider a conformal class [g] with Y (g) > 0; then the minimum is attained (E (go) =Y (g0))
at some metric gy € [g] of positive constant scalar curvature R. Fix a point p € M; then there is
a some positive scaling of the fundamental solution G, of the conformal Laplacian on (M\p, go)
such that the metric gar = Gpgo is asymptotically flat on M\ {p} (with the asymptotic regime
being  — p). The new metric gar is in the conformal class [g], and since LoG, = 0 on M\ {p},
gar has zero scalar curvature by (4.2). Therefore by (4.3) we have

W\u e o™ () {p}>}
M

where the derivatives and norms are with respect to gap. If we change the conformal factors to

Y (g90) =Y (9ar) = inf{

be H! with compact support, this ratio (without the factor of 8) is in fact the optimal constant
S(gar) in the inequality on (M\ {p},gar); and it can be shown by approximation that the
infimum is the same for both classes of functions. Thus we have reduced the problem to showing
that S (gar) < 02/8.

In the case where our original conformal class is [g] = [go] = [gr] With gr being the round
metric on RP? (the projection of the round metric on S® down the double covering S — RP3,
which exists because the antipodal map is an isometry), the symmetries of gr imply that g4r has
spherical symmetry (i.e. its isometry group has a subgroup isometric to SO (3)). Consider the
lift of gar to S>. Since it is spherically symmetric, has zero scalar curvature and is geodesically
complete, it must be isometric to some scaling of the Schwarzschild slice (Mg = R3*\By (0), gs);
and therefore (RIP’?’, gAF) is isometric to the exterior region of Mg (with antipodal points on the
horizon 0B (0) identified) |2, 18]. In this case we also have S (gar) < 02/8 by Theorem 4.6.

To prove this inequality for other initial metrics, we will compare back to gr and apply the
IMCF. First, define the function Uy on Mg so that gr = Ujgs. We know that gr minimises £
over the conformal class and therefore that Uy attains the optimal Sobolev constant of o5/8; and
Uy also has spherical symmetry. Let N; be the IMCF starting at the horizon in Mg; then N, is
just a flow of concentric spheres, so by the spherical symmetry of Uy we can define f (t) = Uy (Ny).

Now consider the general manifold (RP*\ {p},gar). One can show that there is an outermost
compact minimal surface; so letting this be the initial condition we find (by Theorem 3.12) a weak
IMCF solution u. We will use

fou on {u>0}

f(0) on {u<0}

as a test function for the Sobolev inequality and compute the resulting ratio using properties of the
IMCEF. The numerator of the Sobolev ratio is (by the co-area formula for the slices N; = 9 {u < t})

/ VUPRdY = / Fo? [ HaAa
M 0 Ny
The denominator can estimated using the co-area formula and the dominated convergence theorem

b
' /M VU[Cdv > /Ooof(t)ﬁA(Nt)Q </NtHdA>_1dt. (4.4)

By the monotonicity of the Hawking mass and the exponential growth of surface area we have

. H?dA < 167 (1 - e—f/ﬂ)
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and thus by Hélder’s inequality

/ HdA < \/167‘(‘14 (No) (et — et/2).
Ny

If we substitute this into (4.4) we arrive at an estimate for the Sobolev constant:

_ [IVU?av _ (16m)>/2 [ 1 (1) Vet — et/2dt

S (gAF) = (f U6dV)1/3 - (f(;)o ! (t)6 o2t (et B €t/2)_1/2 dt>1/3 : Cl

Note now that the right hand side makes no reference to the geometry of gap - it is entirely defined
in terms of the function f, which we defined from the model case when gar ~ gs. In the model
case, the Hawking mass is constant and all the inequalities above are in fact equalities; so we find
C = S(gs) = 02/8. (Alternatively we find f (t) = (2¢' — et/2)_1/2 from the expanding sphere
solution of the IMCF on Mg and compute the integrals.) We therefore have in general

Y (gar) =85 (gar) < 0a.
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A Asymptotics

A central concept throughout the paper is that of asymptotic flatness, and many of the calculations
therefore involve taking limits 7 — oco. To make these calculations clean, we use the usual big-O
notation for asymptotics. This appendix clearly defines this notation and the way we use it in the
multivariable setting.

Assume we have some distinguished coordinate system ', 2% 2% on M = R3\K where K is

compact. Then

Definition A.1. The spherical coordinate system associated with {xl, x2, x3} is the one given by

{r,0, ¢} satisfying

z' = rcosypsing
2 o -

x® = rsinpsind

2 = rcosb;

2

i.e. the usual spherical polar coordinates if {ml,x ,x3 } are Cartesian coordinates on Euclidean

space.

Definition A.2. A function f: M — R is O (rk) as r — oo if there exists an R > 0 and a C > 0
such that
r>R = |f(r,0,0)| < Cr.

We will write this as f € O (r*) or f = O (r*). It is often convenient to use the notation
f=9+0(r*) tomean f —g e O (r¥).

In particular, the restricted functions f (r,-,-) : B, — R are bounded by Cr* for r > R; we
will often use this to estimate integrals f@Br fdA as r — co. An important consequence is that in
asymptotically flat coordinates and when the sphere is parametrised with angular coordinates 6, ¢
we have [[ f/gdfde with \/g € O (r?); so for @ < —2 the condition f € O (r®) guarantees the
integral vanishes as r — oo.

For the purpose of computation, all the usual power-series manipulations are valid as long as

we understand the coefficients as bounded functions of 6, ¢.
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B First Variation of Area

This equation is central to the geometric analysis of the IMCF.

Proposition B.1. Let M be a Riemannian n-manifold. If Ny = ®X Ny C M is a smooth family

of hypersurfaces satisfying X = vv (i.e. flowing in the normal direction with speed v) then
Ldi =vH dA

where dA is the area form induced by g on Ny, v is the unit normal to N; and H is the mean

curvature scalar of Ny.

Proof. The flow gives us natural coordinates {z',...,z"~! 2" =t} so that N, = {r =t}. Then

dA = \/det gndz A dy

and therefore by Cartan’s magic formula

we have X = 9; and

LxdA = (dig, +ip,d) («/det gNdx/\dy)

— g (VNN e p dy
. at

1 0det
= ° gNdx/\dy

2¢/detgy Ot
1 OJdetgyn
= dA.
2detgy Ot

By the formula for the derivative of the determinant, this is

_ 1 _109N

n—1

1 -
= 3 Z 9" gij1dA
ij=1
We now compute the derivatives of the tangential metric components: for ¢,7 <n —1,
Gijt = Vi <c‘9“8j>

== ’va <6‘1, 8j>

= U(<vl/aﬂaj>+ <al7vuaj>)

= v(([v,0i)] + Viv,0;) + (0;, [v, 0] + V1))

Since [v,0;] = [%ﬁt,&v] = —(0v) 0y and (0, 0;) = 0, the two Lie bracket terms disappear; and

recognising the second fundamental form in the leftover terms we see g;;; = 2vA;;. Therefore

1 ..
Ldi == §gzj2’l)AUdA = HvdA.
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C Computation

Prop 2.6

The following Mathematica code computes the Hawking mass of coordinate spheres in an asymp-
totically (and conformally to 1st order in r—!) flat manifold.

(* Define Coordinate Transformation + Compute Jacobian *)
X = { r Cos[phi] Sin[thetal,

r Sin[phi] Sin[thetal, r Cos[theta] };
J = Transpose[D[X, #] & /@ {r, phi, thetal}ll;
(¥ Define metric in asymptotically Schwarzschild coordinates *)
h = Table[O[r, Infinityl-~2 , {i, 1, 3}, {j, 1, 3}1;
g = (1 +m/(2 r))~4 IdentityMatrix[3] + h;
(¥ Compute metric in new coordinates x*)
gS = Transposel[J].g.J // FullSimplify;
(* Compute induced metric on coordinate sphere *)
gS2 = TakelgS, {2, 3}, {2, 3}];
(¥ Compute area of coordinate sphere x)
A = Integratel

Sqrt [Det [gS2]1]1, {theta, 0, Pi}, {phi, 0, 2 Pil}];
(* Construct unit normal n to coordinate sphere *)
projlv_, u_l := u (gS.u.v)/(gS.u.u);
pr = {1, 0, 0}; pphi = {0, 1, 0}; ptheta = {0, 0, 1};
uphi = pphi;
utheta = ptheta - proj[ptheta, uphil;
ur = pr - projlpr, uphi] - projlpr, uthetal;
n = ur/Sqrt[gS.ur.ur];
(* Derivatives of metric x)
dgli_, j_, k_]1 :=

Sum[Inverse[J][[1, k11 DI

glli, j11, {r, phi, thetal}[[11]1], {1, 1, 3}];

(* Christoffel Symbols *)
G = Table[Suml[
1/2 Inversel[gl[[i, 111 (-dglj, k, 11 + dglk, 1, j1 +
dgl1, j, k1>, {1, 1, 3}, {i, 1, 3}, {j, 1, 3}, {k, 1, 3}1; //
FullSimplify;
(* Compute mean curvature from covariant derivative x*)
H = Sum[D[(J.n)[[i]l], {r, phi, thetal}[[jll] Inversel
J100, 411, {i, 1, 3}, {j, 1, 3}] +
Tr[G.(J.n)] // FullSimplify;
(* Compute Hawking mass of coordinate sphere x*)
mH = Sqrt[A/(16 Pi)] (1 - (1/(16 Pi)) Integratel
H~2 Sqrt[Det[gS2]], {theta, 0, Pi}, {phi, O,
2 Pi}]) // FullSimplify

The result is my (r) = m + O (1/r), allowing us to conclude the result of Proposition 2.6.
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Example 3.8

The following Mathematica code computes the jump radius 7j,mp and produces the figures seen in

Example 3.8.

fla_, x_]1 := Coshla x1/a;

glr_, x_]1 := Sqrtl[r~2 - (x - 1)-2];
sol[r_] := FindRoot[{f[a, x] - glr, x],

D[f[a, x], x] - DIlglr, x1, x1}, {x, 0.5}, {a, 11}1;

catareala_, x0_] :=

2 \[Pi] NIntegratel[f[a, x] Sqrt[1 + D[fl[a, x], x1°2], {x, 0, x01}];

caparealr_, x0_] :=
2 \[Pi] NIntegratel[
glr, x] Sqrt[1 + D[glr, x], x]1-2], {x, 1 - r, x0}];
areagain[r_] :=
catareala /. sollr], x /. soll[r]] - caparealr, x /. sollrl];
If [Abs [#] < x0, f[a, #], glr, #1]1 &;

solfn[r_, a_, x0_]
splot[r_, a_, x0_] :=
ParametricPlot3D [{x, Cos[y]l h[Abs[x]], Sin[y] h[Abs[x]11} /.
h -> solfnlr, a, x0], {x, -2, 2}, {y, 0, 2 \[Pil}];
splot2[r_, a_, x0_] :=
Plot[solfn[r, a, x0][Abs([x]1], {x, -2, 2},
PlotRange -> {{-2, 2}, {0, 1}}]1;
solplot[r_] := splotl[r, a /. sollr], x /. sollrl]l;
solplot2[r_] := splot2[r, a /. sollr]l, x /. sollrll;

rjump = r /. FindRoot[areagain[N[r]], {r, 0.88}, Evaluated -> False]

aminfn[r_] :=

If[r >= rjump , solfnl[r, a /. sollr]l, x /. sollrll, (glr, #]1 &)1;

aminplot2[r_] :=
Plot [aminfn[r] [Abs[x]], {x, -2, 2}, PlotRange -> {{-2, 2}, {0,

Plot [areagain[r], {r, 0.85, 1}, AxesLabel -> {"r", "\[DeltalA"}]

rvals = Append[Table[Exp[t], {t, -0.55, -0.15, 0.05}], rjumpl;
Show [Table[aminplot2[r], {r, rvals}]]

solplot [rjump]
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D Geometric Measure Theory

While we omit many details, here are some basic definitions and results from measure theory that
are integral to the variational formulation of the IMCF. See e.g. [13] for a detailed treatment.

Definition D.1. The d-dimensional Hausdorff outer measure of a set E C M (M a metric space)

is

HY(E) = 511_1}1%) inf {ad Z B (pp,mn < 8)}hen covers E}

neN
where «g4 is the usual measure (area, volume, etc.) of a d-dimensional sphere. (N.B. Some
authors instead use ag = 1 or ag = 2%; our definition corresponds to the classical notions of area
and volume.) A set E is H%-measurable (and we call H? (E) the Hausdorff measure of E) if for
every set ' we have
HY(F)=HY(ENF)+HY (E°NF).

When restricted to the o-algebra of measurable sets, the Hausdorff measure is countably additive.
The n-dimensional Hausdorff measure on an n-manifold agrees with the Lebesgue measure. In the
setting of 3-manifolds, we refer to V = H3 as volume and A = H? as surface area. Integrals of
functions are taken with respect to dV unless otherwise noted.

Definition D.2. A function u : @ — R has bounded variation in Q (v € BV (Q)) if its total

variation

IVull :/ |Vu| := sup {/ udivX‘X € CH(0,TQ), 11Xl < 1}
Q Q

is finite. The Vu appearing here is the vector measure corresponding to the distributional derivative
of u, and |Vu/| is defined by the above supremum. A function w : @ — R has locally bounded
variation (u € BV () if w € BV (U) for each precompact open U C €.

Definition D.3. The perimeter (or often surface area) of a set E in ) is the total variation of its

characteristic function in €:

P(E,9) =/Q|V><E|.

FE is said to have locally finite perimeter if xg € BVioe. The outwards unit normal to OF is the
vector field v such that Vxg = — |[Vxg|v; i.e. the v making the divergence theorem

/X-V|VXE|:/diVX
Q E

Definition D.4. The reduced boundary 0*F of a set of locally finite perimeter F is the set of
points x € OF such that

hold.

o) VXE
lim 7fB"( )

=1
e—0 fBe(m) IVxEe|

The restriction of the Hausdorff measure H"~! to *F is exactly |Vxg|; so H" "1 (0*E) = P (E,Q)
for B CC Q.

Definition D.5. If N is a C' hypersurface of M, then we say H € L] . (N) is the weak mean
curvature of N if p

— =0 A (@Y (N)NW) = H (v, X)dA
dt NOw
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for every X € C° (M, TM) and every precompact open W D suppX.
Now that we have these definitions, we briefly review some useful results.

Theorem D.6. Co-area Formula. For any u € C)! (Q) and v € L' (Q) we have

loc

/v\Vu\d’H”:// vdH" ! dt.
Q RJu—1(t)

Note that the integral is well-defined because locally Lipschitz functions are almost everywhere
differentiable.

Proposition D.7. Lower Semi-Continuity of Surface Area. If E,,E are sets of finite

1
perimeter with H" (E,AE) — 0 or equivalently xg, L—> XE as n — oco; then we have

H" L (0*E) < liminf H" 1 (0" E,,).

n—oo

Proposition D.8. (Semi-)Continuity properties of Weak Mean Curvature. Under local
C* convergence of C* hypersurfaces with |H| uniformly bounded, [ H (v,X) is continuous for any
X, esssup |H| is lower semicontinuous and f¢H2 is lower semicontinuous for smooth ¢.
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E Notation

Xccy
<'v'>

|X|

Xb

ik
v
A
0

8*
XE

Re

Rm, R
T

V.dv
Wh ()
A\B
)
4

X is precompact and X C Int (Y)
g ('a )
lg (X, X))
1-form dual to vector field X with respect to g
vector field dual to 1-form 6 with respect to g
(possibly distributional) covariant derivative
the covariant Laplacian
boundary or reduced boundary
reduced boundary
indicator function of the set F
unit normal vector to a hypersurface
second fundamental form of a hypersurface
H?, dH? when working in 3 dimensions
a function space over €); i.e. vector subspace of R (typically with some norm)
functions Q — R that have restrictions in A (U) for every U CC Q
functions of bounded variation; i.e. with distributional derivatives in D’
k-times continuously differentiable functions Q — R
functions 2 — R with derivatives up to order k£ being Hdolder continuous with exponent «
smooth functions on {2
smooth functions with supp CC Q2
distributions on Q; real-valued Radon measures on ; the continuous dual of D ()
covariant derivative on a submanifold
interior product of form w with vector field X; i.e. partial application w (X, -,---)
the flow of a vector field X with parameter ¢; i.e. the solution to %@tX (p) = X (®p)
Riemannian metric
Einstein tensor (Rc — 4 Rg)
Wk,? (Q)
n-dimensional Hausdorff measure
second fundamental form of Lorentzian embedding M — L
functions on Q with |f|” integrable
principal curvatures of V;i.e. eigenvalues of A
Lorentzian 4-manifold
Lie derivative in the direction X
Riemannian 3-manifold
4-dimensional hypervolume measure
2-dimensional hypersurface of M
perimeter of E in Q (H"~! (9*E) when E CC 2 C R")
scalar curvature of M
Ricci curvature of M
Riemannian curvature of M
stress-energy tensor
H3,dH? when working in 3 dimensions
(Sobolev space) LP functions with distributional derivatives up to order k in L?
set difference {x € A|x ¢ B}
symmetrisation in indices y,v: 3 (Z,, + Z,,) (Z any tensor)

. . . . . . . 1
antisymmetrisation in indices p,v: 5 (Z., — Z,,)
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