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Abstract

In the mathematics of general relativity, the concepts of quasi-local and global mass/energy

do not arise as naturally as in Newtonian and Lorentzian physics. While the stress-energy

tensor component T00 represents the local energy density (of a given observer), the lack of a

well-de�ned gravitational energy density means that the local conservation law for T00 familiar

from special relativity does not hold in the gravitating case. We discuss this di�culty and

show how the global/total mass can be de�ned assuming asymptotic �atness. The ADM

mass provides a de�nition of the total mass in terms of the three-dimensional Riemannian

geometry of a spacelike slice, allowing us to discard the time dependence and Lorentzian

signature once we place su�cient constraints on the extrinsic curvature. From a physical

perspective, we expect the total mass of a universe to be non-negative, and in the case of a

universe containing a black hole (identi�ed by its event horizon) to be at least the usual mass

associated a black hole of a given surface area. These two statements (when cast in terms

of the intrinsic geometry of a maximal spacelike hypersurface) are respectively known as the

Positive Mass Theorem m ≥ 0 and the Riemannian Penrose Inequality 2m ≥ r, and have been

proven in recent decades. We derive the Geroch monotonicity formula for the smooth inverse

mean curvature �ow and subsequent heuristic proof of the Penrose inequality, and then present

the weak formulation introduced by Huisken and Ilmanen that gives a rigorous proof. We also

discuss Bray's proof of the Penrose inequality, the generalisation of the Penrose inequality to

asymptotically �at solutions of the Einstein-Maxwell equations and why the proof of Bray

cannot possibly be generalised in this manner. The application of the weak inverse mean

curvature �ow to the computation of the Yamabe invariant of 3-manifolds is also discussed,

including a sketch of the proof that σ
(
RP3

)
= 6π4/3.
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Introduction

This paper is concerned with the Penrose Inequality, which is a statement in general relativity

that bounds the total mass of a spacetime from below in terms of the horizon area of black holes.

When some assumptions are made about the spacetime, the total mass can be expressed in terms

of the intrinsic Riemannian geometry of a spacelike hypersurface, and thus the Penrose inequality

becomes a statement about three-dimensional Riemannian manifolds. An important case of this

inequality can be proven using a weak formulation of a geometric �ow known as the Inverse mean

curvature �ow (IMCF ). We will see the details of this proof and other applications of the �ow,

both to generalisations of the Penrose inequality and to other topics in Riemannian geometry.

In Section 1, we discuss the di�culties that arise in the de�nition of mass/energy in general

spacetimes. The nature of gravitation in general relativity is radically di�erent to the simple po-

tential/force model of Newtonian gravitation; in particular, there is no notion of local gravitational

energy density, so we cannot de�ne a total energy density satisfying the usual continuity equation.

However, making some assumptions about the asymptotic geometry of the spacetime gives a well-

de�ned total mass, known as the ADM mass. It agrees with the usual notion of mass for the

symmetric black hole spacetimes (Schwarzschild, Kerr, Reissner�Nordström) and is expressed in

terms of the acceleration of initially stationary observers at in�nity, where the spacetime looks like

a point mass. Assuming the existence of a maximal spacelike hypersurface, we arrive at a precise

statement of the Riemannian Penrose Inequality for 3-manifolds of positive scalar curvature.

Section 2 discusses the initial heuristic proof of the Penrose inequality. It was noticed by Geroch

that the quantity known as the Hawking quasi-local mass was non-decreasing when surfaces were

�owed outwards by the inverse of their mean curvature. Assuming the existence of such a �ow

starting at the black hole horizon and expanding towards coordinate spheres asymptotically, the

Penrose Inequality holds, as pointed out by Jang and Wald. However, the existence of such a �ow

is not guaranteed, with some quite simple counterexamples easily found.

Section 3 discusses the weak formulation of the �ow introduced by Huisken and Ilmanen. By

allowing the surfaces to jump outwards at certain times, they avoid the singularities of the smooth

�ow and have a guaranteed solution with the desired asymptotics; and (by careful choice of the

minimisation scheme to control the geometry at the jump times) the monotonicity of the Hawking

mass can be preserved. We will present most of the details of the complete proof.

Section 4 has a more broad scope, and discusses generalisations of the Penrose inequality and

other applications of the IMCF. One generalisation of the inequality (that allows disconnected

horizons) cannot be proven by modi�cations of the IMCF argument, even though it is known to

be true via a di�erent proof due to Bray. The opposite is true for the generalisation to charged

black holes - the argument of Huisken and Ilmanen can easily be generalised, while the analogous

statement that a modi�cation of Bray's proof (i.e. allowing disconnected horizons) would produce

is demonstrably false. The IMCF also has an application in computing the so-called Yamabe

Invariant of compact 3-manifolds; so we will see that Bray's proof in no way obsoletes the utility

of the IMCF.

The reader should have a basic knowledge of (semi-)Riemannian geometry, special & general

relativity and functional analysis. Many of the arguments at the core of the weak formulation rely

on geometric measure theory and the existence and regularity of solutions to linear elliptic PDEs,

but a detailed knowledge of these topics is not necessary.
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1 Mass in General Relativity

1.1 Energy Conservation

Conventions: we use natural units where c,G = 1. The signature of the spacetime metric is

(−,+,+,+).

In special relativity, the classical notion of mass/energy is easily de�ned and satis�es useful

conservation laws as in pre-relativistic physics. We have the local mass/energy as encapsulated

by the Stress-energy tensor T , which is a conserved current (∂µTµν = 0) as a consequence of

Noether's theorem and the invariance of physical Lagrangians under spacetime translations. Fixing

an observer (i.e. a Lorentzian coordinate system), a compact region of space K ⊂ R3 and a time

interval [t0, t1], we have (by the divergence theorem)

0 =

ˆ
K×[t0,t1]

∂µTµ0 dV dt

=

ˆ
K×{t1}

T00dV −
ˆ
K×{t0}

T00dV +

ˆ t1

t0

ˆ
∂K

Tµ0ν
µdAdt

where ν is the outwards normal to K. The �rst two terms are the total energy inside K at times t0

and t1 and the last term is the integrated outwards energy �ux through ∂K, so this is local energy

conservation

Final Energy = Initial Energy− Total energy lost through boundary.

If we assume the stress-energy tensor has compact support on the a spatial slice, then for K

containing this support (i.e. K containing all matter in the universe) the �ux term vanishes and

we �nd
dE

dt
=

d

dt

ˆ
K×{t}

T00dV = 0;

i.e. the total energy is conserved. When instead the energy �ux does not have compact support

but dies o� su�ciently fast (as r−2) at spatial in�nity, we can take the limit r →∞ with K = Br

to arrive at the same result.

When we move to general relativity, we replace the Minkowski spacetime with an arbitrary

Lorentzian 4-manifold (L, g), and the condition on the stress-energy tensor becomes ∇µTµν = 0

for ∇ the covariant derivative of (L, g). For the purposes of measuring lcoal energy density, an

arbitrary observer is now represented by a timelike vector �eld ξ = ∂/∂t. In our argument for

energy conservation, we used the fact that the divergence of the energy �ux is

∂µTµ0 = ∂µ (Tµνδ
ν
0 ) = (∂µTµν) δν0 = 0.

If we now make the natural replacements ∂ → ∇ and δν0 → ξν , we instead �nd

∇µ (Tµνξ
ν) = (∇µTµν) ξν + Tµν∇µξν = Tµν∇µξν ;

so local conservation of energy only holds in general if the symmetric part of ∇ξ[ is zero; i.e. ξ is a
Killing �eld. (The argument is identical to the Minkowski case, where the 4-dimensional cylindrical

region is replaced by the region swept out by a hypersurface under the �ow of ξ; i.e. K × {t} is
replaced by Φξt−t0K0 for K0 some initial spacelike hypersurface with boundary.) The physical

justi�cation for this failure is that there is now energy stored in the �gravitational �eld� that is
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not accounted for in the stress-energy tensor. Since the Newtonian gravitational energy density is

proportional to |∇Φ|2 (for Φ the potential) and Φ is proportional to g00 − η00 in the Newtonian

limit [2, Section 4.4a], any candidate for a general relativistic gravitational energy density should

be expressed in terms of the �rst covariant derivative of the metric. But ∇g = 0, so by moving

to the geometric theory we have lost the concept of local gravitational potential energy, and thus

cannot de�ne a meaningful conserved local energy density.

1.2 Total Energy

Despite the issue raised in the previous section, in turns out that in certain cases there is a well-

de�ned total mass for entire systems. We begin by looking at the case of Newtonian gravity, where

the total mass is easily de�ned as

m =

ˆ
K

ρ dV

for the mass density ρ and a set K containing the support of ρ. We can write this using Poisson's

equation 4πρ = ∆Φ (Φ the gravitational potential) and the divergence theorem as

m =

ˆ
Br

ρ dV

=
1

4π

ˆ
K

∆Φ dV

=
1

4π

ˆ
K

∇Φ · ν dA

= − 1

4π

ˆ
K

a · ν dA (1.1)

where a is the acceleration due to gravity and ν is the outwards unit normal toK. In the case where

ρ is not compactly supported but decays su�ciently fast at in�nity, we can take an exhaustion of

R3 by spheres, giving the limit

m =

ˆ
R3

ρ dV = lim
r→∞

− 1

4π

ˆ
Br

a · ν dA.

We can now interpret a · ν as the outwards force done to hold a unit mass in place against the

force of gravity. Thus we can translate this de�nition of mass into general relativity when we have

notions of �holding in place� and of a �large sphere�. Formally, this means we want a stationary

spacetime L (one with a global time translation symmetry ξ = ∂/∂t, ∇(µξν) = 0) with a foliation

of spacelike slices Mt (such that Mt+δ = ΦξδMt) that are asymptotically �at (i.e. approach �at

space at spacelike in�nity).

To generalise equation 1.1 to the case of general relativity, we can take S to be a topological

sphere inside one of the spacelike slices enclosing the support of the stress-energy tensor and a to

be the acceleration of an observer following the time translation ξ, which is a = 1
V ∇ξξ, V = |ξ|

[2]. If we assume the spacetime is static (i.e. the slices Mt are orthogonal to ξ), then the sphere

S has unit normals ν (in the spacelike direction) and ξ/V (timelike), so the canonical volume

4-form is dµ = dA ∧ ν[ ∧ ξ[/V . Thus (remembering that ξ is a Killing �eld and therefore satis�es
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∇jξk = ∇[jξk])

m = − 1

4π

ˆ
S

〈a, ν〉 dA

= − 1

4π

ˆ
S

νk
1

V
ξj∇jξkdA.

= − 1

4π

ˆ
S

∇jξkν[kξj]V
−1dA

= − 1

8π

ˆ
S

∇jξkdµjklmdxl ∧ dxm

= − 1

8π

ˆ
S

?dξ.

This is known as the Komar Integral. Since

d ? dξ = ?∆ξ =
2

3
?
(
Rc (ξ, ·)]

)
(1.2)

[2] which vanishes in vacuum regions by Einstein's equation, Stoke's theorem tells us the Komar

integral is the same for any two homologous spheres enclosing the support of the stress-energy

tensor; so in the case when the matter content has �nite extent we can use this as the de�nition

of the total mass. Noting that 8πm = −
´
?dξ is a coordinate-free expression, we can therefore

discard the requirement that the spacetime be static and use this expression for the mass of any

stationary spacetime. As in the Newtonian case, we can generalise this by taking a limit r → ∞
and requiring the stress-energy tensor to decay su�ciently fast at spatial in�nity; call the limiting

value of m the Komar Mass. In the case where S is eventually the (full) boundary of a compact

region B (e.g. when the universe has Euclidean topology), we can use Stoke's theorem, (1.2) and

Einstein's equation to write the Komar mass in terms of the stress-energy tensor:

m = − 1

8π

ˆ
B

d ? dξ = 2

ˆ
B

(
T − 1

2
tr (T ) g

)
(ν, ξ) ;

but for general spacetimes, no such volume integral expression exists. The Komar mass can be

generalised further to non-static spacetimes that have an asymptotically Killing timelike vector

�eld [2]. However, since we are interested in the mass at a �single moment in time�, the dataset we

actually want to work with is (M, g, k) where M is a 3-manifold taken as a maximal spacelike slice

of the spacetime L, g is the induced Riemannian metric on M and k is the second fundamental

form of M ↪→ L. The condition of maximality means tr k = 0. This would allow everything to be

done in the framework of Riemannian geometry. It turns out that we can rewrite the Komar mass

in terms of the 3-dimensional geometry [3], giving an expression known as the ADM mass:

mADM =
1

16π

∑
i

ˆ
∂Br

(gij,i − gii,j) νjdA

where the metric components and area form are de�ned in terms of an asymptotically �at coordin-

ate system - we will make this precise soon.

Arnowitt, Deser and Misner (ADM) took the approach of describing general relativity in

terms of a foliation by spacelike 3-manifold slices. Writing the usual Einstein-Hilbert Lagrangian

L = R
√
g in terms of the foliation variables, they arrived at a Hamiltonian formulation of general

relativity. By applying a slight generalisation of Noether's Theorem (necessary because the Lag-

rangian uses second-order derivatives of the metric) to the time-translation symmetry ξ, we arrive
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at the exact same expression for the ADM mass. [6]

De�nition 1.1. A Riemannian manifold (M, g) is strongly asymptotically �at if there is a compact

set K and coordinates xi on M\K such that

|gij − δij | ∈ O (1/r) |gij,k| ∈ O
(
1/r2

)
as r =

√∑
i x

ixi →∞, where δ = diag (1, 1, 1) is the standard Euclidean metric for the coordinates

xi.

De�nition 1.2. The ADM mass of an asymptotically �at manifold is

mADM =
1

16π
lim
r→∞

∑
i

ˆ
∂Br

(gij,i − gii,j) νjdA (1.3)

where ν is the outwards unit normal �eld to the 2-sphere ∂Br (0) =
{∑

i x
ixi = r2

}
, dA is the

area form induced by the �at metric on ∂Br and the tensor components are with respect to the

asymptotic coordinates xi.

Proposition 1.3. [4] The ADM mass is well-de�ned in strongly asymptotically �at manifolds;

i.e. the limit converges and is independent of the coordinate system chosen - if xi and yi are two

coordinate systems satisfying the asymptotic conditions, then they both give the same value for

mADM.

The total mass essentially measures the asymptotic rate at which the gravitational �eld drops

o�; so since the analogue of the gravitational potential in general relativity is the metric, the ADM

mass measures the asymptotic rate at which the space approaches Euclidean space. We make this

precise with the following examples.

Example 1.4. In the Newtonian case, Φ is harmonic in the vacuum region and thus we can expand

Φ (assuming it is O
(
r−1
)
to ensure convergence of total mass) as a multipole expansion

Φ (r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Cmlr
−l−1Y ml (θ, ϕ)

where Y ml are the normalised spherical harmonics on S2. Thus we have

4πm = lim
r→∞

ˆ
Sr

∂Φ

∂r
dA

= lim
r→∞

∑
l

∑
m

(−l − 1)Cmlr
−l−2

ˆ
Sr

Y ml r2dΩ

= lim
r→∞

∑
l

∑
m

(−l − 1)Cmlr
−l
ˆ
Sr

Y ml dΩ

= −
0∑

m=−0

Cm0 = −C00

i.e. the total mass is just the monopole coe�cient.

Example 1.5. In the case where the metric is conformally �at to �rst order

gij =
(
1 + αr−1

)
δij +O

(
r−2
)
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we can easily make the analogous statement for general relativity precise: we have

gij,k = −αxk
r3

δij +O
(
r−3
)

and therefore ∑
i

gij,in
j = −

∑
i

αxi
r3

ni +O
(
r−3
)

= − α
r2

+O
(
r−3
)

∑
i

gii,jn
j = −

∑
i

δii
αxj
r3

nj +O
(
r−3
)

= −3α

r2
+O

(
r−3
)
.

Plugging these into the de�nition of the ADM mass gives

mADM =
1

16π
lim
r→∞

(ˆ
∂Br

2α

r2
dA+

ˆ
∂Br

O
(
r−3
)
dA

)
=

1

16π
lim
r→∞

(
4πr2 2α

r2
+O

(
r−1
))

=
α

2

exactly; so up to the factor of 2, the ADM mass is precisely the r−1 decay rate of the deviation from

the �at metric. In the Schwarzschild case, the metric is (in isotropic coordinates) (1 +m/2ρ)
4
δ =(

1 + 2m/ρ+O
(
ρ−2

))
δ, so we recover the Schwarzschild mass parameter as the ADM mass.

In what follows, the non-negativity of scalar curvature will be an integral component of some

arguments. This proposition justi�es the assumption by showing it to be true for the case of

maximal spacelike hypersurfaces of physically reasonable spacetimes.

Proposition 1.6. Let (M, g̃, k) be a maximal spacelike hypersurface of a spacetime (L, g). If (L, g)

satis�es the weak energy condition then (M, g̃) has non-negative scalar curvature.

Proof. The weak energy condition states that T (X,X) = Rc (X,X) − 1
2Rg (X,X) ≥ 0 for any

future-directed timelike vector X. In particular, consider the future-pointing unit normal ν to M ;

then we have T (ν, ν) = Rc (ν, ν) + 1
2R ≥ 0. Now write the Gauss equation for the scalar curvature

R̃ of the submanifold:

Rijkl = R̃ijkl + kikkjl − kjkkil.

Since we are interested in the submanifold scalar curvature R̃, we want to take 3-dimensional

traces; i.e. contractions with the 3-metric g̃ij = gij + νiνj :W

Rcjl +Rνjνl = R̃cjl + kiikjl − kikkil
R+ 2Rc (ν, ν) = R̃+H2 − |k|2

where H = trk is the mean curvature of M ↪→ L and |k|2 = tr
(
k2
)
. We see now that since H = 0

(M is maximal), the weak energy condition says exactly that

R̃ ≥ |k|2 ≥ 0.

Note. We used above (and will continue to use throughout this paper) the convention that

the mean curvature is the trace of the second fundamental form. Classically this was divided by
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the hypersurface dimension (to produce the average of the principal curvatures, hence the name

mean).

1.3 Positivity of Mass

Physically, we expect that the total energy of an isolated gravitating system should always be

positive; but this is not at all evident from the de�nition of the ADM mass. This was known as

the positive mass conjecture. The work of Schoen and Yau in the 1970s led to its proof:

Theorem 1.7. If (M, g) is asymptotically �at with non-negative scalar curvature, then mADM ≥ 0

with equality if and only if M is isometric to R3.

Proof. We give a sketch. Assume m < 0. Then by a conformal transformation we can construct a

metric g̃ such that R̃ > 0 and m̃ < 0. Consider the coordinate circles Cσ :=
{

(x1, x2, x3) |x2
1 + x2

2 = σ2
}
.

Each Cσ is spanned by an area-minimising surface Sσ. One can show that for su�ciently large

h, the surfaces Sσ are contained in the cylinders
{
x2

1 + x2
2 ≤ σ2, |x3| ≤ h

}
. Applying the regular-

ity theory for minimal surfaces gives compactness, and thus taking a sequence σn → ∞ we can

extract a subsequence σnk → ∞ such that Sσnk converges in C2 on compact sets to a complete

area-minimising surface bounded between the planes x3 = ±h. For a compact variation fν of S,

we have the second variation formula (with Rc (ν, ν) replaced via the Gauss equation)

d2

dt2
|t=0A

(
Φfνt (S ∩ suppf)

)
=

ˆ
S∩suppf

−f∆f + f2

(
κ− 1

2
|k|2 − 1

2
R

)
dA ≥ 0

since S is area-minimising. (∆ is the Laplacian derived from the induced metric on S). Choosing

an appropriate f , this yields ˆ
S

κ dA > 0.

An argument using the Gauss-Bonnet theorem (with boundary term) on the discs Bρ∩S as ρ→∞
shows that ˆ

S

κ dA ≤ 0,

a contradiction.

For a full proof including the existence of g̃ and the construction of the variation f , see the

original paper [5] or the exposition in [6].

1.4 Horizons and Trapped Surfaces

One of the most radical predictions of general relativity is the formation of black holes by gravita-

tional collapse. Black holes are regions of spacetime from which no light rays (and thus no matter

or information/causal e�ects at all) can escape to future lightlike in�nity1. The event horizon is

the boundary of a black hole; i.e. the �point of no return�. In the case of a spherically symmetric

mass of radius rm in an otherwise vacuum spacetime, the region of spacetime outside the extent

of the mass (i.e. r > rm) is described by the usual Schwarzschild metric. When the radius of the

mass is less than the Schwarzschild radius rS = 2m, the surface r = rS bounds a black hole. By the

singularity theorem of Hawking and Penrose [7], a physically reasonable spacetime (satisfying some

energy conditions and containing no closed timelike curves) containing a black hole will eventually

1There is a precise de�nition of an asymptotically �at spacetime using a compacti�cation that provides points
at spatial in�nity, past and future timelike in�nity and a space of past and future lightlike in�nities (for the various
directions one can escape in).
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develop a singularity ; i.e. a failure of geodesic completeness that cannot be removed by extending

the spacetime; so even if initially we have a smooth spherically symmetric matter distribution, if

it is su�ciently dense then it will collapse to a point, giving the Schwarzschild slice after this time.

The de�nition of the event horizon is fundamentally global and intertwined with the 4-dimensional

geometry of the full spacetime; so in general it cannot be de�ned in terms of the slice data (M, g, k).

However, in the stationary case, the intersection of the event horizon withM is precisely the (locally

de�ned) apparent horizon [8, 9.3.1], which we will now de�ne.

De�nition 1.8. A trapped surface is a surface N ↪→M ↪→ L such that the expansion in the normal

future lightlike directions is negative; i.e. trN∇X < 0 for any lightlike vector �eld X normal to N .

A marginally trapped surface replaces the strict inequality with ≤ 0.

N = ∂C is an outer marginally trapped surface if it is the boundary of a compact set C in M

and the marginally trapped inequality holds for X such that g (X, νN ) ≥ 0.

In this case, C is called a trapped region.

Here the vector �elds X are the generators of �ows that represent the trajectories of photons

moving orthogonally from N ; so the trapped surface condition means that both the �inwards� and

�outwards� light fronts decrease in area (at least locally). In the time-symmetric case (and in

particular the static case), these generators are (scalings of) ξ ± ν so we have

0 < trN (∇ξ)± trN (∇ν) = ±H

(where H = divNν is the mean curvature of N in M) since the fact ξ is a Killing �eld implies ∇ξ
is antisymmetric. That is, the future outwards lightlike expansion is exactly the mean curvature.

Proposition 1.9. If the closure of the union of all trapped regions in M is a smooth manifold

with boundary, then its boundary has zero expansion in the future lightlike directions. [2]

De�nition 1.10. Under the hypothesis of Proposition 1.9, the apparent horizon of M is

A = ∂

(⋃
{trapped regions in M}

)
.

In the static case, the union of trapped regions is the black hole, and thus A is the event

horizon. The fact that A has zero expansion means that (assuming time symmetry) it has zero

mean curvature in M ; i.e. it is a minimal surface of M . Since we took the union of all trapped

regions inM , A is the outermost compact minimal surface inM . We will use this as our de�nition

of the horizon.

1.5 The Penrose Inequality

While considering the formation of black holes, Penrose originally conjectured [11] (and gave a

physical argument for) an inequality between the (apparent horizon) surface area A (N) of a black

hole and the total ADM mass mADM of the spacetime containing it:

mADM ≥
√
A (N)

16π
.

Writing A = 4πr2, this is 2m ≥ r; so we see that the inequality is saturated in the Schwarzschild

case. Since we can always choose the spacetime to be vacuum outside the black hole, this is best

interpreted as being a bound on the area of a black hole of given mass. Moving to the Riemannian
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picture, the black hole horizon becomes an outermost minimal surface in the spacelike slice M ,

and we arrive at the full statement of the Riemannian Penrose Inequality:

Theorem 1.11. Let M be an asymptotically �at, connected, complete Riemannian 3-manifold

with non-negative scalar curvature. If N0 is an outermost compact minimal surface of M (i.e.

there are no compact minimal surfaces of M enclosing N0) then

mADM ≥
√
A (N0)

16π
(1.4)

where mADM is the ADM mass of M . Furthermore, if the inequality is saturated, then (M, g) is

isometric to the Schwarzschild slice.

Since the region enclosed by N0 plays no role in either the theorem or its proof, we can discard

the interior and assume without loss of generality that N0 = ∂M . While this full version of the

theorem has been proven, it cannot be proven by the techniques presented in this paper - see

Section 4.1 for a discussion. We will instead prove the weaker version when the horizon N0 is

connected:

Theorem 1.12. Let M be an asymptotically �at connected complete Riemannian 3-manifold with

non-negative scalar curvature. If ∂M is compact, connected and a minimal surface, and there are

no compact minimal surfaces in the interior of M then the Penrose inequality holds for N0 = ∂M .

Furthermore, if the inequality is saturated, then (M, g) is isometric to the Schwarzschild slice.

Proof. We will de�ne the Hawking mass mH (E) ∈ R of a surface E and a �ow of connected

surfaces Nt starting at N0 such that

1. t 7→ mH (Nt) is non-decreasing,

2. mH (N0) =
√
A (N0) /16π, and

3. mH (Nt)→ mADM as t→∞.

We then have mADM ≥ mH (Nt) ≥ mH (N0) =
√
A (N0) /16π as desired. For the rigidity, see

Proposition 3.16.

We will present the proof of this theorem given by Huisken and Ilmanen [1]. The central

ingredient is the monotonicity of the Hawking mass �rst used by Geroch [9] in a proof of the Positive

Mass Theorem (assuming a smooth inverse mean curvature �ow starting from small spheres). This

was similarly applied to the Penrose inequality by Jang and Wald [10], under the assumption that

the �ow Nt remained smooth. The contribution of Huisken and Ilmanen was to de�ne a generalised

weak �ow with guaranteed existence that still satis�es the required conditions.

11



2 Smooth Inverse Mean Curvature Flow

This section will introduce the Inverse Mean Curvature Flow and detail the Jang-Wald approach

to the Riemannian Penrose Inequality using the Hawking mass. The only missing ingredient here is

the existence of the smooth �ow Nt; and we will see in general that it does not exist, necessitating

the reformulation in Section 3. We will continually refer back to the canonical example of the

Schwarzschild spacelike slice, with initial condition being the event horizon.

2.1 De�nition

We start with an intuitive de�nition of a geometric �ow. The motivation behind its introduction

for this problem is Geroch's monotonicity result, which will be proved later.

De�nition 2.1. Let I be an interval and U a smooth 2-manifold. A smooth function x : U×I →M

is a solution of the classical/smooth inverse mean curvature �ow (IMCF) if and only if the velocity

�eld X := ∂x/∂t = dx (∂t) satis�es

X =
1

H
ν (2.1)

where H (p, t) is the mean curvature of Nt = x (U, t) at p and ν (p, t) is the outwards unit normal

to Nt at p.

Example 2.2. The simplest example of the IMCF is for a round sphere in Euclidean 3-space. The

mean curvature of a sphere of radius r is 2r−1, so the sphere �ows outwards at a uniform speed

r/2. Thus the �ow consists of concentric spheres Nt = Sr(t) satisfying

dr

dt
=
r

2

which has solution r (t) = r (0) et/2.

2.2 Geometric Evolution

Let us investigate the evolution of the submanifold geometry under the smooth IMCF. We can

compute derivatives of various quantities using the �ow ΦXt of the normal velocity �eld X, since

Nt = ΦXt N0. First, consider the area A (Nt). We �nd

d

dt

∣∣∣
t=0

A (Nt) =
d

dt

∣∣∣
t=0

ˆ
ΦXt N0

dA

=
d

dt

∣∣∣
t=0

ˆ
N0

ΦX∗t dA

=

ˆ
N0

d

dt

∣∣∣
t=0

ΦX∗t dA

=

ˆ
N0

LXdA

=

ˆ
N0

H |X| dA

12



where we used the result of Proposition B.1. Since the evolution equation (2.1) is invariant under

t 7→ t+ ∆t, we therefore have

d

dt
A (Nt) =

ˆ
Nt

H |X| dA

= A (Nt) (2.2)

since |X| = 1/H for IMCF.

Now consider the evolution of the mean curvature. We will write v = |X| for the speed.

1

v

∂H

∂t
=

1

v
∇vνH

= ∇νtr∇ν

= tr∇2
ν,·ν

= −Rc (ν, ν) + tr∇2
·,νν

= −Rc (ν, ν) + dxi∇i∇νν − dxi∇∇iνν

= −Rc(ν, ν) + div∇νν − trA2

Now note that for X tangent to the surface we have

〈∇νν,X〉 = 〈−∇νX, ν〉

= 〈[X, ν] , ν〉 − 1

2
∇X 〈ν, ν〉

=

〈[
X,

1

v
∂t

]
, ν

〉
= ∇X

(
1

v

)
〈∂t, ν〉

= −1

v
∇Xv =

〈
−1

v
∇v,X

〉
;

and 〈∇νν, ν〉 = 1
2∇ν 〈ν, ν〉 = 0, so writing D for the induced connection on the surface we have

∇νν = Dνν = − 1
vDv. Thus

div∇νν = 〈∇ν∇νν, ν〉+ divN

(
−1

v
Dv

)
.

We have

divN

(
−1

v
Dv

)
= −1

v
∆Nv −

〈
D

(
1

v

)
, Dv

〉
= −1

v
∆Nv +

|Dv|2

v2
.

But also

〈∇ν∇νν, ν〉 = − |∇νν|2

= −
∣∣∣∣−1

v
Dv

∣∣∣∣2
= −|Dv|

2

v2
.
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Putting these together gives the result

1

v

∂H

∂t
= −Rc (ν, ν)− |A|2 − 1

v
∆Nv,

which is in the case of IMCF

∂H

∂t
= −∆N

(
1

H

)
− Rc (ν, ν)

H
− |A|

2

H
. (2.3)

2.3 Hawking Mass Monotonicity

De�nition 2.3. The Hawking quasi-local mass (or just �Hawking mass�) of a 2-surface N ⊂M is

mH (N) :=
R (N)

2

(
1− 1

16π

ˆ
N

H2dA

)
(2.4)

where H is the mean curvature scalar of N and R (N) is the �radius� of N ; which we de�ne by

analogy with the Euclidean sphere as R (N) =
√
A (N) /4π .

Example 2.4. Spheres in Schwarzschild. Consider a slice {t = t0} of the Schwarzschild spacetime

in isotropic coordinates {ρ, θ, ϕ} where the metric has the form

g =

(
1 +

m

2ρ

)4

δ =

(
1 +

m

2ρ

)4 (
dρ2 + ρ2dθ2 + ρ2 sin2 θdϕ2

)
.

Note that the ρ appearing here is not the usual radial coordinate r, but is related by r =

ρ (1 +m/2ρ)
2
; the horizon of the black hole appears at ρ = m/2 and ρ ∼ r as ρ→∞ (so we have

the same asymptotic behaviour). To compute the mean curvature of the spheres SR = {ρ = R},
we will use Proposition B.1 in a similar fashion to our derivation of (2.2): since the geometry is

spherically symmetric, we have
d

dρ

ˆ
Sρ

dA = H |∂ρ|
ˆ
Sρ

dA

from which H can be calculated. The area of a sphere is

Aρ :=

ˆ
Sρ

dA =

ˆ
S2

(
1 +

m

2ρ

)4

ρ2 = 4πρ2

(
1 +

m

2ρ

)4

and the length of ∂ρ is

|∂ρ| =
√
|gρρ| =

(
1 +

m

2ρ

)2

;

so we have

H
∣∣∣
ρ

=
1

|∂ρ|
dAρ/dρ

Aρ
= 8ρ (2ρ+m)

−3
(2ρ−m) .

14



Substituting this into (2.4) gives

mH (Sρ) =

√
Aρ
16π

(
1− 1

16π

ˆ
Sρ

64ρ2 (2ρ+m)
−6

(2ρ−m)
2

)

=
1

2
ρ (1 +m/2ρ)

2

(
1− 4ρ2 (2ρ+m)

−6
(2ρ−m)

2
4ρ2

(
1 +

m

2ρ

)4
)

=
1

8ρ

(
(2ρ+m)

2 − (2ρ−m)
2
)

= m.

This is consistent with the idea of measuring the �total mass� enclosed by the surface Sρ - the

Schwarzschild manifold models a spacetime that is vacuum except for a �point mass� m. (Note,

however, that in general spacetimes mH is not a good notion of enclosed mass - for instance,

additivity mH (∂A ∪ ∂B) = mH (∂A) +mH (∂B) for disjoint A,B does not hold.)

For a minimal surface N , we have H = 0 and therefore mH (N) =
√
µ (N) /16π: exactly the

term appearing on the RHS of Equation 1.4; and as r → ∞, the Hawking mass of the sphere

∂Br approaches the ADM mass (see Proposition 2.6). The Hawking mass therefore provides a

connection between the two quantities appearing in the Penrose inequality, and is the centre of the

proof of Theorem 1.12.

Proposition 2.5. The Hawking mass is non-decreasing under the smooth inverse mean curvature

�ow of connected surfaces.

Proof. Let R (Nt) =
√
A (Nt) /4π. We found earlier that LXdA = dA and therefore

d

dt
A (Nt) = A (Nt) =⇒ d

dt
R (Nt) =

1

2
R (Nt)

and also
∂H

∂t
= −∆

(
1

H

)
− Rc (ν, ν)

H
− |A|

2

H

where D,∆ are the derivatives on the surface. Now we compute

d

dt

ˆ
Nt

H2dA =

ˆ
Nt

LX
(
H2dA

)
=

ˆ
Nt

∂H2

∂t
dA+

ˆ
Nt

H2LXdA

=

ˆ
Nt

(
2H

∂H

∂t
+H2

)
dA

=

ˆ
Nt

(
−2H∆

(
1

H

)
− 2Rc (ν, ν) +H2 − 2 |A|2

)
dA.

Taking traces in the Gauss equation for N ↪→M gives

R− 2Rc (ν, ν) = RN + |A|2 −H2 = 2κ+ |A|2 −H2

where κ is the Gaussian curvature of N . This gives us

d

dt

ˆ
Nt

H2dA =

ˆ
Nt

(
−2H∆

(
1

H

)
+ 2κ− |A|2 −R

)
.

15



Now note that

|A|2 = λ2
1 + λ2

2

=
1

2
(λ1 − λ2)

2
+

1

2
(λ1 + λ2)

2

=
1

2
(λ1 − λ2)

2
+

1

2
H2;

so we can integrate by parts to get

d

dt

ˆ
Nt

H2dA =

ˆ
Nt

(
−2H∆

(
1

H

)
+ 2κ− 1

2
(λ1 − λ2)

2 − 1

2
H2 −R

)
= 2

ˆ
Nt

κ− 1

2

ˆ
Nt

H2 −
ˆ
Nt

(
2
|DH|2

H2
+

1

2
(λ1 − λ2)

2
+R

)

≤ 4πχ (Nt)−
1

2

ˆ
Nt

H2

where we used the Gauss-Bonnet formula and the non-negative scalar curvature of M . For con-

nected Nt we have χ (Nt) ≤ 2 and therefore

d

dt

ˆ
Nt

H2dA ≤ 8π

(
1− 1

16π

ˆ
Nt

H2

)
.

This implies

d

dt
mH (Nt) =

1

2

dR (Nt)

dt

(
1− 1

16π

ˆ
Nt

H2

)
+
R (Nt)

2

d

dt

(
1− 1

16π

ˆ
Nt

H2

)
≥ 1

2
mH (Nt)−

1

2
mH (Nt)

= 0;

so t 7→ mH (Nt) is non-decreasing.

2.4 Hawking Mass Asymptotics

Proposition 2.6. For asymptotically �at spacetime with ADM mass m we have

lim
r→∞

mH (∂Br) = m

where ∂Br are the coordinate spheres in the asymptotically Euclidean coordinates.

Proof. We will prove this for the case where the metric is conformally �at to �rst order; i.e.

g = (1 +m/2r)
4
δ+O

(
r−2
)
. Changing to the associated spherical coordinates (see Appendix A),

the metric takes the form

g =

 (1 +m/2r)
4

r2 sin2 θ (1 +m/2r)
4

r2 (1 +m/2r)
4

+

 O
(
r−2
)

O
(
r−1
)

O
(
r−1
)

O
(
r−1
)

O (1) O (1)

O
(
r−1
)

O (1) O (1)

 .

The area form induced on ∂Br by g is

dA =
(
r2 sin θ (1 +m/2r)

4
+O (1)

)
dθ ∧ dϕ;
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so the area of ∂Br is

Ar =

ˆ
∂Br

(
r2 sin θ (1 +m/2r)

4
+O (1)

)
dθdϕ

= r2 (1 +m/2r)
4
ˆ
∂Br

sin θdθdϕ+

ˆ
∂Br

O (1) dθdϕ

= 4πr2 (1 +m/2r)
4

+O (1)

since θ, ϕ range over the domain (0, π) × (0, 2π) for every r; so if the O (1) term is bounded by

C then its integral is bounded by 2π2C. Applying the Gram-Schmidt algorithm to the frame

{∂θ, ∂ϕ, ∂r} gives

ν =
(
1−m/r +O

(
r−2
))
∂r +O

(
r−3
)
∂θ +O

(
r−3
)
∂ϕ.

Computing the Christo�el symbols in the original asymptotically Euclidean frame gives (see Ap-

pendix C)

H = ∂iν
i + Γiijν

j =
2

r
− 4m

r2
+O

(
r−3
)
.

We can now compute

mH (∂Br) =

√
Ar
16π

(
1− 1

16π

ˆ
∂Br

H2dA

)
=

1

2

√
r2 (1 +m/2r)

4
+O (1)

(
2m

r
+O

(
r−2
))

.

When we take the limit r → ∞ we can drop all but the highest order (in r) terms in both

multiplicands, giving

lim
r→∞

mH (∂Br) = lim
r→∞

1

2

√
r2

2m

r
= m.

Thus what needs to be shown is that the surfaces Nt converge to the large coordinate spheres in

some strong enough sense to control the Hawking mass. Intuitively, we expect this to be true - any

deformation from a sphere is naturally smoothed out by the �ow, since any ��attening� has less

curvature and thus will expand faster than the rest of the surface, thus catching up, and similarly

sharp extrusions have a lot of curvature and would fall back. We will see this is indeed the case

(in a more general form) in Section 3.

2.5 Rigidity

We can now prove the rigidity portion of Theorem 1.12 assuming the existence of a smooth inverse

mean curvature �ow.

Proposition 2.7. If mADM =
√
A (N0) /16π and M admits a smooth IMCF solution of con-

nected surfaces starting at N0 and asymptotic to large spheres, then (M, g) is isometric to the

Schwarzschild slice.

Proof. The equality implies that mH (Nt) = mADM for all t, and thus that dmH (Nt) /dt = 0 for

all t; i.e. the terms discarded in the computations of Proposition 2.5 are in fact all zero. Firstly

we see χ (Nt) = 2, so the Nt are topologically 2-spheres. This implies R = 0 everywhere, and
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on each Nt we have DH = 0 and λ1 = λ2; so the surfaces have constant principal curvatures

λ1 = λ2 = H (t) /2. By the evolution equation (2.3), Rc (ν, ν) is also constant on Nt, and thus the

Gaussian curvature κ = λ1λ2 − Rc (ν, ν) is constant on Nt; so Nt is isometric to a round sphere.

Since the concentric spheres Nt foliate M , we can write the metric on M using the �ow time

coordinate along with those on the 2-sphere, which gives (noting that ∂t has length v = H−1)

g = H−2dt2 + dΩ2
t

where dΩ2
t is the round metric on S2 scaled to have total area A (Nt); i.e.

dΩ2
t =

A (Nt)

4π
dΩ2 =

A (N0)

4π
etdΩ2.

We now make a change of variables r = et/2
√

A(N0)
4π so that A

(
Nt(r)

)
= 4πr2, which gives

g = H−2d

(
ln

(
4πr2

A (N0)

))2

+ r2dΩ2

=
4H−2

r2
dr2 + r2dΩ2.

Since mH (Nt) = mADM, we have

mADM =
r

2

(
1− 1

16π

ˆ
Nt(r)

H2dA

)

and thus (since H is constant on Nt)

H2 =
16π

A
(
Nt(r)

) (1− 2mADM

r

)
=

4

r2

(
1− 2mADM

r

)
.

Thus we have

g =

(
1− 2mADM

r

)−1

dr2 + r2dΩ2,

the familiar Schwarzschild metric.
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3 Weak Inverse Mean Curvature Flow

3.1 Motivation

We have established the Riemannian Penrose Inequality for the case where there exists a smooth

geometric �ow solving (2.1) such that Et → Sr with r →∞ as t→∞. However, it is not hard at

all to see that such a solution is not guaranteed.

Example 3.1. Consider a thin torus in R3 parametrised by x

y

z

 =

 cos θ (1 + ε cosϕ)

sin θ (1 + ε cosϕ)

ε sinϕ

 .

This has mean curvature

H =
1 + 2ε cosϕ

ε (1 + ε cosϕ)
.

For ε� 1 this is ε−1 + cosϕ+O (ε) ≈ ε−1 > 0, so using it as an initial condition for (2.1), the �ow

can initially be approximated by exponential growth of the tube radius ε. However, as ε increases,

the mean curvature will approach 0 on the inner edge of the (distorted) torus (cosϕ = −1); so

there is a singularity in the velocity and we cannot continue it.

Thus we must generalise our de�nition of the �ow (i.e. move to a weak reformulation) if we

want global existence for general initial conditions and geometries. As the �rst step towards a

weak formulation, we recast (2.1) in terms of the level sets of some function:

Let u : M → R be a function (which one can think of as the �time� in the �ow) and let the

surface at time t be Nt := ∂ {u < t}. Then if u is di�erentiable and |∇u| > 0, one sees that the

normal velocity is X = ∇u/ |∇u|2 ; so since

H = divN

(
∇u
|∇u|

)
,

we �nd that for regular points of u, Equation 2.1 is equivalent to

div

(
∇u
|∇u|

)
= |∇u| . (3.1)

One advantage of the level-set formulation (3.1) over the geometric �ow equation (2.1) is that

it (at least partially) provides a mechanism to avoid the singularities - if we can devise a scheme

to have the surface jump �over� the singularities (in the example to jump from a torus to some

topologically spherical hull), then this can be represented as a plateau of the function u. Of course

this will require signi�cant changes to the formulation, as (3.1) is not de�ned for ∇u = 0.

Equation (3.1) is a degenerate elliptic PDE. The program of Huisken and Ilmanen was to de�ne

weak solutions of Equation 3.1, prove the global existence of these solutions in the asymptotically

�at case and show the required results on mH still hold for weak solutions.
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3.2 Variational Formulation

Note. Throughout this section we will introduce the weak formulation of the IMCF, where we

must drop assumptions of smoothness of surfaces. For simplicity we will use notation consistent

with the previous discussion; but note that the actual de�nitions are more subtle. The changes are:

V, dV now refer to the n-dimensional Lebesgue measure, A, dA to the n− 1-dimensional Hausdor�

measure, H to the weak mean curvature and ∂ to the reduced boundary. See Appendix D for details.

The variational approach to weak reformulation of second-order PDEs on a compact domain

K is to �nd a Lagrangian L : R × Rn → R : (u,∇u) 7→ L (u,∇u) such that the Euler-Lagrange

equations

div
∂L
∂∇u

=
∂L
∂u

(3.2)

are equivalent to the original PDE. One then de�nes the action functional

SKL : A → R : u 7→
ˆ
K

L (u (x) ,∇u (x)) dx

for some convenient space of functionsA ⊂ RK . A weak solution is then de�ned as a local minimiser

of SKL , and one �nds that every weak solution that is C2 is in fact a strong solution to the original

PDE. The existence of weak solutions is usually proven by endowing A with additional structure

(usually at least Banach) and applying the theory of functional analysis. There are then various

cases (e.g. linear elliptic PDEs) where the weak solutions are in fact guaranteed to be strong

solutions; this is regularity theory. (For example, a classic result is that every weakly harmonic

function is in fact analytic.) For our purposes, we will use A = C0,1

loc
(Ω) where Ω is the domain

of interest; i.e. the locally Lipschitz continuous functions, which (when restricted to a precompact

open subset Ω′ so A′ = C0,1 (Ω′)) forms a Banach space when given the norm

‖u‖ = sup |u|+ sup
x 6=y

|u (x)− u (y)|
d (x, y)

.

We will follow the weak formulation of the IMCF and subsequent proof of the Penrose inequality

given by Huisken and Ilmanen in [1]. Equation 3.1 does not appear to have the form of the Euler-

Lagrange equation; so we instead �freeze� the |∇u| on the RHS; i.e. for a given u ∈ A, de�ne the
Lagrangian

Lu (v) = v |∇u|+ |∇v| , (3.3)

which has Euler-Lagrange equation

div

(
∇v
|∇v|

)
= |∇u| . (3.4)

We can now recover Equation 3.1 by setting u = v. At �rst this seems strange, but we will see

that we still have a minimisation principle. Call the action JKu (v) :=
´
K
Lu (v,∇v) for compact

sets K.

De�nition 3.2. A locally Lipschitz function u is a weak solution of the IMCF (or a �WIMCF

solution�) if for every locally Lipschitz v with {u 6= v} ⊂⊂ K we have JKu (u) ≤ JKu (v). u is a

subsolution or supersolution if this holds for v ≤ u, v ≥ u respectively.

If u is C2, this implies u satis�es Equation 3.4 with u = v; i.e. u is a strong solution; so we still

have a useful weak formulation of the problem. We restrict ourselves to compact sets because we

expect the function u (and therefore its competitors v) to grow unbounded as r →∞ (indeed this
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is necessary to conclude the main theorem!), so assumptions of global integrability are too strong.

The minimisation principle does not depend on the choice of K, as long as it contains the support

of u− v; thus we will often omit the K.

It is also simple to impose initial conditions:

De�nition 3.3. AWIMCF solution u satis�es the initial condition given by a surface N0 = ∂E0 ⊂
M if E0 = {u < 0}.

Since the level sets play such a central role, it becomes convenient to cast the problem in terms

of the sub-level sets Et = {u < t}, using the new functional

JKu (E) = A (∂E ∩K)−
ˆ
E∩K

|∇u| .

This functional is lower semi-continuous with respect to convergence of sets in measure; i.e.

if V (En∆E) → 0 then Ju (E) ≤ lim infn→∞ Ju (En) . (This is a straightforward consequence of

Prop D.7.) It also satis�es the inequality

Ju (E ∩ F ) + Ju (E ∪ F ) ≤ Ju (E) + Ju (F ) (3.5)

since the same inequality holds for the surface area and equality holds for the
´
|∇u| term. We

will often omit the intersections with K.

The following proposition recasts the solution criteria in terms of Ju.

Proposition 3.4. u minimises Ju amongst v satisfying {u 6= v} ⊂⊂ K ⇐⇒ for each t, Et

minimises Ju amongst all sets F satisfying F∆Et ⊂⊂ K.

Proof. (⇐=) For u, v ∈ C0,1
loc (Ω) de�ne Et = {u < t}, Ft = {v < t}, and let (a, b) be a bounding

interval for the image of u and v on K (guaranteed by compactness of K and continuity of u, v).

Then we have by the co-area formula (see Appendix D)

Ju (v) =

ˆ
K

v |∇u|+
ˆ
K

|∇v|

=

ˆ
K

v |∇u|+
ˆ b

a

A (∂Ft) dt

where we �rst restricted the second integral to K\ {|∇v| = 0}, where {v = t} = ∂ {v < t}. Now

write

v = − (b− v) + b

= −
ˆ b

a

χ{t>v}dt+ b.

This yields

Ju (v) =

ˆ b

a

(
A (∂Ft)−

ˆ
K

χ{t>v} |∇u|
)
dt+ b

ˆ
K

|∇u| . (3.6)

But {v < t} ∩K is exactly Ft ∩K, so we recognise Ju (Ft):

Ju (v) =

ˆ b

a

Ju (Ft) dt+ b

ˆ
K

|∇u| .

If Ju (Et) ≤ Ju ({v < t}) for every competitor v, then we have
´ b
a
Ju (Et) ≤

´ b
a
Ju (Ft) and there-

fore Ju (u) ≤ Ju (v); i.e. u minimises Ju.
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(=⇒) The other direction is more subtle - we will show that if u is a supersolution then each Et

minimises Ju on the inside (with respect to competitors F ⊂ Et), and likewise for supersolutions

Et minimises Ju on the outside (with respect to competitors F ⊃ Et).
First, let u be a supersolution, and choose any F ⊂ Et0 for any time t0 such that F∆Et0 is

compact. Order the collection{
A is a �nite-perimeter subset of Et0

∣∣∣F ⊂ A,Ju (A) ≤ J (F )
}

by the relation A / B if and only if A ⊂ B and Ju (A) > Ju (B). For any chain An, we have by

lower semi-continuity of Ju

Ju

(⋃
n

An

)
≤ lim inf

n
Ju (An) ≤ Ju (Aj)∀j

so
⋃
nAn is an upper bound for the chain. By Zorn's Lemma we therefore have a maximal element;

i.e. an F ′ ⊂ Et0 such that Ju (G) ≥ Ju (F ′) whenever G ⊃ F ′. Now de�ne

v =

t0 on Et0\F ′

u elsewhere

so that

Ft =

Et t > t0

Et ∩ F ′ t ≤ t0
.

While v is not C0,1
loc and thus we cannot immediately use it as a competitor v ≥ u, it is locally

bounded and of locally bounded variation; so Ju (v) is well de�ned (if we interpret
´
|∇v| as the

total variation). Approximating it with smooth functions vi → v on K such that |∇vi| ⇀ |∇v|
in D′ weak-* and applying the fact that u is a supersolution gives Ju (v) ≥ Ju (u) and therefore

(using Equation 3.6) ˆ b

a

Ju (Ft) dt ≥
ˆ b

a

Ju (Et) dt.

For t ≤ t0 we have (using (3.5) and the maximality of F ′)

Ju (Ft) + Ju (F ′) ≤ Ju (Ft) + Ju (Et ∪ F ′) ≤ Ju (Et) + Ju (F ′) (3.7)

and therefore

Ju (Ft) ≤ Ju (Et) .

(We obviously have equality for t > t0.) Thus we must in fact have Ju (Ft) = Ju (Et) for a.e.

t ∈ [a, b]. Making this substitution in (3.7) gives

Ju (Et ∪ F ′) ≤ Ju (F ′)

for almost every t; so taking the limit t↗ t0 and applying lower semicontinuity gives

Ju (Et0) ≤ Ju (F ′) ≤ Ju (F ) ;

i.e. Et0 minimises Ju on the inside.

Now assume u is a subsolution and consider any F ⊃ E+
t0 = {u ≤ t0} for any t0. Then using
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the exact same argument as before (just �ipping the direction of set inclusion in the de�nition of

/) we can pass to an F ′ ⊂ F with Ju (F ′) ≤ Ju (F ) such that for every G satisfying E+
t0 ⊂ G ⊂ F

′

we have Ju (G) ≥ Ju (F ′). De�ning v so that

Ft =

Et t < t0

Et ∪ F ′ t ≥ t0

and using the same argument based on (3.6) gives Ju (Ft) = Ju (Et) for a.e. t, so we have

Ju (Et ∩ F ′) ≤ Ju (F ′). Passing to the limit t↘ t0 using the lower semicontinuity gives

Ju
(
E+
t0

)
≤ Ju (F ′) ≤ Ju (F ) ;

i.e. E+
t0 = {u ≤ t0} =

⋂
t>t0

Et minimises Ju on the outside. Since E+
t → Et0 locally as t ↗ t0,

we have Ju (Et0) ≤ lim inft↗t0 Ju
(
E+
t

)
. Given an F ⊃ Et0 , we have F ⊃ E+

t for all t < t0 and

therefore Ju
(
E+
t

)
≤ Ju (F ); so Ju (Et0) ≤ Ju (F ); i.e. Et0 itself minimises Ju on the outside.

Thus if u minimises Ju amongst all competitors v then each Et minimises Ju amongst all

competitors F .

The relationship between Ju and surface area means that the following de�nition will come in

useful when determining the geometric consequences of the minimisation principle - in particular,

the theory of minimising hulls will allow us to investigate the behaviour of the �ow at the jumps.

De�nition 3.5. A set E ⊂ M is called a minimising hull if it minimises surface area on the

outside; i.e. if A (∂E) ≤ A (∂F ) whenever F ⊃ E. It is called a strictly minimising hull if equality

holds only for F = E a.e.

For a given set E, there is a unique smallest strictly minimising hull E′ containing E given by

the intersection of all such strictly minimising hulls. Call E′ the strictly minimising hull of E.

When ∂E is C2, ∂E′ is C1,1 and ∂E′\∂E is C∞ [1]. Therefore any smooth variation of ∂E′

supported inside ∂E′\∂E will stay inside the minimisation domain (i.e. be the boundary of a set

F ⊃ E) for small enough parameter, giving H = 0 on ∂E′\∂E.

Proposition 3.6. For a weak IMCF solution u:

1. each Et = {u < t} is a minimising hull;

2. each E+
t = {u ≤ t} is a strictly minimising hull for t > 0;

3. E′t = E+
t ; and

4. A (∂Et) = A
(
∂E+

t

)
.

Proof.

1. Since Et minimises Ju, we have

A (∂Et)−
ˆ
Et

|∇u| ≤ A (∂F )−
ˆ
F

|∇u|

and therefore when F ⊃ Et
A (∂Et) ≤ A (∂F ) .
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2. We saw in the proof of Prop 3.4 that E+
t also minimises Ju, so the same proof works. To

show it is strict, assume F ⊃ E+
t and A (∂F ) = A

(
∂E+

t

)
. Then we must have

ˆ
F\E+

t

|∇u| = 0,

thus u is constant on each connected component of F\E+
t . Since M is connected, each

component of F\E+
t has closure touching {u = t}, so by continuity of u, u = t on F\E+

t . By

the de�nition of E+
t this implies F ⊂ E+

t , so F = E+
t .

3. Since E+
t ⊃ Et is a strictly minimising hull, we have E+

t ⊃ E
′

t by de�nition; so
´
E+
t
|∇u| =´

E′t
|∇u| since E+

t \E′t lies in the level set {u = t}, where |∇u| = 0 almost everywhere. This

implies A
(
∂E+

t

)
≤ A (∂E′t) (since E+

t minimises Ju) and therefore E+
t = E′t since E

′
t is

strictly minimising.

4. Both Et and E
+
t minimise Ju so Ju (Et) = Ju

(
E+
t

)
; and

´
Et
|∇u| =

´
E+
t
|∇u| as in the proof

of 3, so this means A (∂Et) = A
(
∂E+

t

)
.

With these facts established, we can now easily prove:

Corollary 3.7. The Geroch monotonicity holds at jumps; i.e. mH

(
E+
t

)
≥ mH (Et).

Proof. We have A (∂Et) = A
(
∂E+

t

)
by Prop 3.6.4. Since E+

t = E′t by Prop 3.6.3, the theory of

minimising hulls gives

H∂E+
t

=

0 on ∂E+
t \∂Et

H∂Et on ∂E+
t ∩ ∂Et

.

Thus

mH

(
∂E+

t

)
=

√
A
(
∂E+

t

)
16π

(
1− 1

16π

ˆ
∂E+

t

H2
∂E+

t

)

=

√
A (∂Et)

16π

(
1− 1

16π

ˆ
∂E+

t ∩∂Et
H2
∂Et

)

≥
√
A (∂Et)

16π

(
1− 1

16π

ˆ
∂Et

H2
∂Et

)
= mH (∂Et) .

We now present a simple example of the weak �ow, with an analysis of the jumping phenomenon

and the behaviour of the Hawking mass.

Example 3.8. Two spheres. Let M be Euclidean 3-space and consider the initial condition

E0 = Br0 (−1, 0, 0) ∪ Br0 (1, 0, 0) for some r0 � 1; so the initial surface consists of two spheres

of radius r0 with centres a distance 2 apart. The mean curvature of a sphere of radius r is the

constant 2r−1; so we have

mH (∂E0) =

√
A (∂E0)

16π

(
1− 22

16πr2
0

A (∂E0)

)
= −r0

2
.
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Initially, the �ow will proceed as it does for a single sphere: exponential growth of the radius

r = r0e
t/2

Et = Br (−1, 0, 0) ∪Br (1, 0, 0) , t < tjump.

During this period of smooth �ow, the Hawking mass will decrease as mH (∂Et) = −r/2! This

is a reminder of how important the connectedness of Nt is for the Geroch monotonicity to hold.

The smooth �ow would self-intersect once r = 1; but our weak �ow must jump before this time,

as the two touching spheres have surface area 8π while being contained in a rounded cylinder with

area 2 (2π + 2π) = 8π, so a slight pinching of this cylinder would decrease the area and contradict

Proposition 3.6.

Let us now attempt to �nd the actual jump time tjump and the resultant minimising hull

∂E+
tjump

. From the rotational symmetry, we know the surface must remain a surface of revolution

about y = z = 0; and we know that any new part of the surface must be minimal. Thus the new

portion of the surface must be a catenoid; so we will end up with a catenoidal bridge between two

spheres (something like a dumbbell; see Figure 3). Since the two-spheres con�guration also has a

mirror symmetry, the catenoid will be centred on the origin. Thanks to the spherical and re�ection

symmetry, we need only consider a cross-section z = 0, x > 0; the spherical and catenoidal surfaces

will then be represented in general by the revolutions of the functions

sr (x) =

√
r2 − (x− 1)

2

ca (x) =
1

a
cosh ax.

For the two surfaces to join together into a C1 surface (which must occur since the strictly min-

imising hull is C1,1), we need some point x = x0 where

sr (x0) = ca (x0) , s′r (x0) = c′a (x0) . (3.8)

For small r this has no solution (i.e. there is no catenoid spanning the gap between the spheres); but

for each r in some interval [r0, 1] there is a unique solution (x0, a) that satis�es these constraints.

The area gained during the jump is

δA (r) = Area of catenoidal section−Area of 2 spherical caps

= 2

[
2π

ˆ x0

0

ca (x)
√

1 + c′a (x) 2dx− 2π

ˆ x0

1−r
sr (x)

√
1 + s′r (x)

2
dx

]
.

The surface will jump at the �rst time when δA (r) ≤ 0; i.e. when the two spheres have area

greater than or equal to the dumbbell. The constraints (3.8) are not easily solved analytically; but

using a numerical root-�nding algorithm (see Appendix C), we can produce approximate values of

δA - see Figure 1. Applying root-�nding to the function δA then gives the jump radius

r0e
tjump/2 = rjump ≈ 0.862.

The surface will gain some Hawking mass during the jump (we know that area is preserved, and the

spherical caps we lost had a positive contribution to
´
H2), but we still have mH

(
∂E+

tjump

)
< 0.

As the �ow continues out to in�nity, the Hawking mass will (by the results of the previous section)

increase with limit mADM = 0.

Figure 2 shows cross-sections of the �ow at regular times, with the �nal surface shown being

E+
tjump

.
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Figure 1: δA (r) vs r for solutions of (3.8)
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Figure 2: Cross-section of weak inverse mean curvature �ow. Initial condition is r0 ≈ 0.577.

Figure 3: The minimising hull E+
tjump

.
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3.3 Elliptic Regularisation

The existence of weak IMCF solutions is proven using an approximation scheme known as Elliptic

Regularisation. We move up a dimension and consider translates of the graph of u in M ×R: the
surfaces

N ε
t (x) =

(
x,
u (x)− t

ε

)
.

These are level sets of the function U : M × R→ R given by

U (x, ζ) =
u (x)− ζ

ε

and therefore (substituting u→ U in (3.1) and simplifying) N ε
t is an IMCF if and only if

Eε (u) = div

 ∇u√
|∇u|2 + ε2

−√|∇u|2 + ε2 = 0. (3.9)

This new equation is non-degenerate elliptic for ε > 0 (we no longer have a blow-up when ∇u→ 0).

We will show there exist smooth solutions uε of (3.9) on domains that exhaust M as ε → 0, with

uε remaining locally uniformly bounded. We can then take a convergent subsequence and pass

to the limit ε → 0, giving a weak IMCF on M × R whose level sets are vertical cylinders (i.e.

Nt = {x ∈M |uε (x)→ t} × R). Intersecting these cylinders with M will give a solution to the

original weak IMCF problem. We assume the existence of a smooth weak subsolution v with

∇v 6= 0 everywhere; these always exist in asymptotically �at manifolds (consider functions of the

form C ln r in the asymptotic region). Let Ft = {v < t}.

Lemma 3.9. (A priori estimates for regularised solutions). [1, p384] For every L > 0 there is an

ε (L) > 0 such that for all ε ∈ (0, ε (L)] and all τ ∈ [0, L− 2]: If u solves (3.9) on ΩL = FL\E0

with u = 0 on ∂E0 and u = τ on ∂FL then u satis�es the estimates

u ≥ −ε in ΩL,

u ≥ v + τ − L in F̄L\F0,

|∇u| ≤ max (H, 0) + ε on ∂E0,

|∇u| ≤ C (L) on ∂FL,

‖u‖2;α ≤ C (ε, L) and

|∇u (x)| ≤ max
∂ΩL∩Br(x)

|∇u|+ ε+ C/r

for any r such that Br (x) is di�eomorphic to a Euclidean ball (Bρ, δ) such that the metric com-

ponents satisfy |gij − δij | ≤ 1/100, |gij,k| ≤ 1/100r.

Theorem 3.10. For any L > 0, there is an ε > 0 and a solution of (3.9) such that u = 0 on ∂E0

and u = L− 2 on {v = L}.

Proof. We study the related problem with modi�ed boundary condition u = τ on {v = L}, where
0 ≤ τ ≤ L− 2. De�ne

F (w, ε) = F ε (w) = div

 ∇w√
1 + |∇w|2

− ε√1 + |∇w|2;
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then u solves (3.9) if and only if F ε (u/ε) = 0. For the case τ = 0, we consider F as a map of

Banach spaces

F : C2;α
0

(
Ω̄L
)
× R→ C0;α

(
Ω̄L
)

where ΩL = {v < L} \E0. We have a solution F (0, 0) = 0, and F is di�erentiable in the C2;α
0

directions at 0:

d0F
0 (w) =

d

dt

∣∣∣
t=0

F 0 (tw)

= div

 d

dt

∣∣∣
t=0

t∇w√
1 + t2 |∇w|2

− ε d
dt

∣∣∣
t=0

√
1 + t2 |∇w|2

= ∆w;

i.e. the linearised version of F ε (w) = 0 is simply Laplace's equation. Since ∆ : C2;α
0

(
Ω̄L
)
→

C0;α
(
Ω̄L
)
is an isomorphism (i.e. the Dirichlet problem has a unique Hölder solution for Hölder

data), the Implicit Function Theorem for Banach spaces tells us there is an interval (−ε0, ε0) and a

function S : (−ε0, ε0)→ C2;α
0

(
Ω̄L
)
such that F (S (ε) , ε) = 0 for every ε ∈ (−ε0, ε0); i.e. for τ = 0,

there is a solution F ε (u) = 0 for some ε > 0; �x such an ε.

We must now extend this to τ 6= 0; i.e. to more general boundary conditions. Let I be the set

of values τ such that (3.9) has a solution with u = τ on ∂FL. We just showed 0 ∈ I. Take solutions
uτj with τj ∈ I∩ [0, L− 2] an arbitrary sequence converging to τ ; then the uniform Hölder estimate

in Lemma 3.9 implies that (passing to a subsequence) we have local uniform convergence uτj → u

(since the Arzela-Ascoli theorem implies bounded sets in C0,α
(
Ω̄L
)
are compact in C

(
Ω̄L
)
). Since

Eε is continuous as a map C2
(
Ω̄L
)
→ C0

(
Ω̄L
)
, the limit satis�es Eε (u) = 0; and since uτj = τj on

the outer boundary we have u = τ on the outer boundary. Thus τ ∈ I ∩ [0, L− 2], so I ∩ [0, L− 2]

is closed. To show I is open we use the same linearisation method as before, this time expanding

about an arbitrary u (not just u = 0). Consider the operator

Gτ : C2,α
(
Ω̄L
)
→ C0,α

(
Ω̄L
)
× C2,α (∂ΩL)

G (u, τ) = Gτ (u) := (Eε (u) , u|∂ΩL − τχ∂FL)

so that u is a solution with outer boundary value τ if and only if Gτ (u) = 0. Clearly dGτ |u (w) =

(dEε|u (w) , w|∂ΩL). Since Eε (u) depends only on ∇u, the linearisation dEε|u (w) = 0 is of the

form

div (M (x) · ∇v) + V (x) · ∇v = 0

for some matrices M and vectors V ; so the maximum principle for linear elliptic PDEs implies

that the linearisation dE (w) = 0 has only solution w = 0; i.e. dE is injective. The existence

and regularity theory for elliptic PDEs guarantees solutions for the linearised equation, so dE is

an isomorphism. Applying the Implicit Function Theorem as before gives solutions with outer

boundary values in a neighbourhood about τ ; i.e. I is open. Thus I ∩ [0, L− 2] is both closed

and open when viewed as a subset of the space [0, L− 2] (with the subspace topology from R), so
I ⊃ [0, L− 2]. Thus we have a solution with the desired boundary condition u = L−2 on ∂FL.

Now that we have solutions to the regularised equations, we need to show that we can take a

limit and obtain a weak IMCF solution on M .

Theorem 3.11. If ui are weak IMCF solutions on open sets Ωi such that ui → u and Ωi → Ω

locally uniformly and supK |∇ui| is eventually bounded for each K ⊂⊂ Ω, then u is a weak IMCF
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solution on Ω.[1, p375]

Theorem 3.12. For any precompact smooth open set E0, there exists a locally Lipschitz weak

IMCF solution with initial condition E0 (assuming the existence of a subsolution v as before).

Proof. Take a sequence Lj → ∞ and a corresponding sequence εj → 0 such that for each j, we

have a solution uj of (3.9) with outer boundary condition uj |∂FL = L−2. Combining the estimates

for |∇u|, we �nd that for large enough j (so that Br (x) does not intersect ∂FLj )

|∇uj (x)| ≤ max
∂E0∩Br(x)

max (H, 0) + 2εj + C/r ≤ max
∂E0∩Br(x)

max (H, 0) + C + C/r

i.e. the uj are equicontinuous on compact subsets. Thus by Arzela-Ascoli we can pass to a

subsequence and obtain local uniform convergence uj → u, with u satisfying the same gradient

estimates. From the �rst estimates in Lemma 3.9 we know that u is non-negative and that u→∞ in

the asymptotic region (since the subsolution must). Since the regularised solutions are in fact strong

IMCF solutions (with Uj (x, ζ) = (uj (x)− ζ) /εj) on M × R, they are also weak IMCF solutions

and therefore the gradient estimate and Theorem 3.11 imply that their limit U (x, ζ) = u (x) is a

weak IMCF solution on M × R. If U describes a smooth �ow we are done - since the level sets

of U are vertical cylinders, the principal curvature in the vertical direction is zero so the mean

curvature is unchanged when we intersect with M . Since the velocity and normal vectors would

also be unchanged, the smooth IMCF equation would be satis�ed. For the general case, take any

variational competitor v and let V (x, ζ) = v (x)φ (ζ) where

φ (ζ) =


1 ζ ∈ [0, S]

ζ + 1 ζ ∈ (−1, 0)

S + 1− ζ ζ ∈ (S, S + 1)

0 ζ /∈ (−1, S + 1) =: IS

is a Lipschitz cuto� function. Since U is a weak IMCF solution we have JU (U) ≤ JU (V ); i.e.

ˆ
K×IS

|∇u|+ u |∇u| ≤
ˆ
K×IS

|∇V |+ V |∇u| ≤
ˆ
K×IS

φ |∇v|+ |φ′|+ vφ |∇u|

for any K containing {u 6= v}. In the limit S →∞, the interval [0, S] dominates the integral after

we divide by S; i.e.

1

S

ˆ
K×IS

φ |∇v|+ |φ′|+ vφ |∇u| → 1

S

ˆ
K×IS

|∇v|+ v |∇u| ;

so we have
´
K
|∇u|+ u |∇u| ≤

´
K
|∇v|+ v |∇u|; i.e. u is a weak IMCF solution on M .

Thus we have existence of the desired �ow with Nt = ∂ {u < t}.

3.4 Monotonicity

We have already made an argument for the monotonicity in the weak case - on surfaces with

∇u 6= 0 everywhere we have smooth IMCF and thus monotonicity by Proposition 2.5, and at

jumps Et → E+
t we have monotonicity by Corollary 3.7. If we could somehow determine that

the jumps occur discretely in t, then we would have a watertight proof; but it is not immediately

obvious how to do this. We instead will prove the monotonicity using the regularised solutions

from the previous subsection.
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Theorem 3.13. For a weak IMCF solution, the level sets Nt satisfy

mH (Ns) ≥ mH (Nr)+
1√
16π

ˆ s

r

√
A (Nt)

(
1− 1

2
χ (Nt) +

1

16π

ˆ
Nt

2 |D logH|2 + (λ1 − λ2)
2

+RdA

)
dt;

for all s > r ≥ 0. In particular, the Geroch monotonicity dmH (∂Et) /dt ≥ 0 holds where mH (Nt)

is di�erentiable and Nt are connected.

Proof. For any ε > 0, let N ε
t be the graph of (uε − t) /ε in M × R where uε is a solution to the

regularised equation (3.9). SinceN ε
t is a smooth IMCF, we have by the computations in Proposition

2.5:
d

dt

ˆ
Nεt

H2 =

ˆ
Nεt

(
−2H∆

(
1

H

)
− 2Rc (ν, ν) +H2 − 2 |A|2

)
dA

where dA now denotes the 3-dimensional hyperarea. By the existence proof for (3.9), we have

sequences Lj → ∞, εj → 0 such that N j
t := N

εj
t → Nt × R, and the mean curvature H > 0.

We would like to take the limit of the integral equation above; but clearly the integrals will not

be �nite (since Nt are in�nite vertical cylinders). Since what we are actually interested in is the

2-dimensional integrals after intersecting with M , we multiply by some cuto� function φ ∈ C2
c (R)

with φ ≥ 0,
´
φ = 1, suppφ ⊂ [a, b] similarly to in the proof that the cylinder cross-sections solve

the weak IMCF. Fix a T > 0 and move far enough along the sequence that supuε = L− 2 ≥ T + b

and ε ≤ 1 so that ∂N ε
t (which is nonempty due to the regularised solutions existing only on a

compact domain ΩL) is disjoint from Ω = M × [a, b]. Using (2.3), we have

d

dt

ˆ
Nεt

φH2 =

ˆ
Nεt

φ

(
−2H∆

(
1

H

)
− 2Rc (ν, ν)− 2 |A|2

)
dA+H2 ∂φ

∂t
dA+ φH2L∂tdA.

Since ∂t = ν/H and L∂tdA = dA, this becomes

d

dt

ˆ
Nεt

φH2 =

ˆ
Nεt

[
φ

(
−2H∆

(
1

H

)
− 2Rc (ν, ν)− 2 |A|2 +H2

)
+H∇νφ

]
dA.

Integrating by parts and then integrating this over a time interval [r, s] ⊂ [0, T ] we arrive at

ˆ
Nεs

φH2dA =

ˆ
Nεr

φH2dA+

ˆ r

s

ˆ
Nεt

[
φ

(
2
|DH|2

H2
+ 2Rc (ν, ν) + 2 |A|2 −H2

)
+ 2
〈Dφ,DH〉

H
−H∇νφ

]
dAdt

(3.10)

where D is the covariant derivative on the hypersurface.

Huisken and Ilmanen derive estimates for all of the quantities in the above integrals, with
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resulting limits (after passing to some subsequence):

ˆ
Njt

φH2dAdt →
ˆ
Nt×R

φH2dAdt

ˆ r

s

ˆ
Njt

φH2dAdt →
ˆ r

s

ˆ
Nt×R

φH2dAdt

ˆ r

s

ˆ
Njt

|H∇νφ| dAdt → 0

ˆ r

s

ˆ
Njt

〈Dφ,DH〉
H

dAdt → 0

lim inf
j→∞

ˆ s

r

ˆ
Njt

φ
|DH|2

H2
dAdt ≥

ˆ s

r

ˆ
Nt×R

φ
|DH|2

H2
dAdt

lim inf
j→∞

ˆ s

r

ˆ
Njt

|A|2 dAdt ≥
ˆ s

r

ˆ
Nt×R

|A|2 dAdt

(The second fundamental form of a C1 set can be de�ned, and behaves as usual including the

Gauss-Bonnet theorem for κ = detA.) These are all intuitive remembering that ∇φ is vertical

while the geometry approaches vertical symmetry; see [1, Section 5] for the details. Thus we can

take limits of (3.10), giving

ˆ
Ns×R

φH2dA ≤
ˆ
Nr×R

φH2dA+

ˆ r

s

ˆ
Nt×R

φ

(
2
|DH|2

H2
+ 2Rc (ν, ν) + 2 |A|2 −H2

)
dAdt.

Now that our integrals are over cylinders, each integral splits as

ˆ
Ns×R

φ (ζ) f (x) dA (x) dζ =

ˆ
Ns

fdA

ˆ
R
φ =

ˆ
Ns

fdA

since the geometric quantities f have vertical symmetry and we chose
´
φ = 1. (Here dA is once

again the 2-dimensional surface area measure.) Thus we have

ˆ
Ns

H2dA ≤
ˆ
Nr

H2dA+

ˆ r

s

ˆ
Nt

(
2
|DH|2

H2
+ 2Rc (ν, ν) + 2 |A|2 −H2

)
dAdt.

Similarly to the smooth case, we have

2 |A|2 + 2Rc (ν, ν)−H2 =
1

2
(λ2 − λ1)

2
+R− 2κ+

1

2
H2

and thus applying the Gauss-Bonnet formula
´
Nt
κ = 2πχ (Nt) (which is valid by approximation

of Nt by C
2 surfaces [1]) and noting |DH| /H = |D logH| since H > 0, we have the desired result

after some manipulation.

3.5 Asymptotics

The asymptotic behaviour of mH (Nt) can be analysed using a blowdown argument. For a weak

IMCF solution u and a λ > 0, the geometry is scaled as Ωλ = {λx|x ∈ Ω}, gλ (x) = λ2 (x/λ) and

uλ = u (x/λ) where Ω is the asymptotically �at end ofM (so it is covered by a single asymptotically

�at coordinate chart with respect to which we perform the scalings).

Lemma 3.14. There are some constants cλ → ∞ such that uλ (x) − cλ → (n− 1) log |x| loc-
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ally uniformly; i.e. modulo uniform relabellings of the level sets, the solution converges to the

exponentially expanding spheres on Rn.

Once this is established, we have convergence of the scaled-down level sets N
1/r(t)
t → ∂B1 (0)

for r (t) such that A (Nt) = 4πr2. The following theorem is then proven by writing N
1/r(t)
t as a

graph over ∂B1 (0), linearising the expression for the mean curvature of Nt and comparing to the

(scaled-down) ADM mass integral. (See [1] Lemma 7.4 for details.)

Theorem 3.15. If u solves the weak IMCF, then limt→∞mH (∂Et) ≤ mADM.

3.6 Rigidity

By Theorem 3.12, there is a solution Nt = ∂Et = ∂ {u < t} of the weak IMCF starting at the

horizon N0, with mH (Nt) increasing by 3.13 and limt→∞mH (Nt) ≤ mADM by Theorem 3.15; so

we have mADM ≥ mH (N0) =
√

A(N0)
16π since N0 is minimal. Thus we have proven all of Theorem

1.12 except for the rigidity claim. The argument is very similar to the smooth case after some

initial analysis.

Proposition 3.16. If mADM =
√
A (N0) /16π then (M, g) is isometric to the Schwarzschild slice.

Proof. By Theorems 3.13 and 3.15, we must have mH (Nt) = mADM for all time. For equality to

hold in Theorem 3.13, we must have

ˆ
Nt

|D logH|2 = 0

for almost every t; thus H is constant on Nt for every t by Proposition D.8 (taking the limit

Ns → Nt, s↗ t). If there was a jump N+
t 6= Nt, then since mH

(
N+
t

)
= mH (Nt), the calculations

in 3.7 imply that H = 0 on Nt\N+
t . But since H is constant on Nt, this implies Nt is a compact

minimal surface (that does not touch N0), contradicting the fact that N0 is the outermost horizon.

Thus Nt = N+
t and H > 0 for all t, so the �ow can always be continued smoothly. The result now

follows by Proposition 2.7.
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4 Generalisations and other applications of IMCF

4.1 Multiple Horizons

It is physically reasonable to expect that if there are multiple black holes in the universe (i.e. ∂M

is the disjoint union of more than one topological 2-sphere), then the inequality should still hold

for A (∂M); this is the full Penrose inequality of Theorem 1.11. While the weak �ow of Huisken

and Ilmanen can be generalised [1, 6.1] to this case with the initial condition being one connected

component N0 of ∂M and the �ow jumping over the other components at appropriate times, all

it proves is
√
A (N0) /16π ≤ mADM. If we try to use all of ∂M as our initial condition, then

we do not have connectedness and therefore the monotonicity fails. We could instead start the

�ow with one connected component of the boundary and attempt to account for the areas of the

other components by a more careful analysis of the jump times; but this is doomed to fail, as the

following counterexample shows.

Example 4.1. Consider N0 a tiny sphere in the Schwarzschild slice with centre a large distance

from the origin. Then the Hawking mass of N0 is tiny (since it is zero for Euclidean spheres),

and the �ow Nt will proceed smoothly for some �nite time before jumping to encompass the

Schwarzschild horizon. Since the spheres Nt are not the symmetric spheres of the Schwarzschild

slice, the rigidity theorem implies that mH (Nt) is strictly increasing in the initial smooth �ow.

Thus we have mH (NT ) > 0 for T the jump time, and mH

(
N+
T

)
≤ mADM by a similar argument

(mH (Nt) must strictly increase while �owing out to in�nity by rigidity). Therefore the massmADM

of the black hole is not just picked up in the jump that encompasses the singularity (as is the case

when we start the �ow on the horizon); it is somehow non-locally distributed, with an increase of

only mH

(
N+
T

)
−mH (NT ) < mADM at the jump time.

The generalised inequality
√
A (∂M) /16π ≤ mADM was eventually proven by Bray [12] by a

di�erent method, with the Positive Mass Theorem being a key ingredient in the proof. However,

this does not obsolete the inverse mean curvature �ow, as we will see in the following subsections.

4.2 Penrose Inequality with Charge

A natural extension of the Penrose inequality is to the case of a charged black hole. The Schwarz-

schild solution saturates the Penrose inequality, so to �nd a candidate bound for the horizon area we

should look to the analogous solution for the Einstein-Maxwell equations - the Reissner�Nordström

slice

g =

(
1− 2m

r
+
Q2

r2

)−1

dr2 + r2dΩ2

where Q is the total charge and we use units where 4πε0 = 1. As in Example 2.4, we can compute

the mean curvature by

H (Sr) =
1

|∂r|
d lnA (Sr)

dr
=

2

r

√
1− 2m

r
+
Q2

r2
.

Solving for H (SR) = 0 gives us R± = m±
√
m2 −Q2, so the slice has outermost horizon

R+ = m+
√
m2 −Q2. (4.1)
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The Hawking masses of the coordinate spheres are

mH (SR) =
R

2

(
1− 1

16π

ˆ
SR

H2dA

)
=

R

2

(
1− 4πR2

16π

4

R2

(
1− 2m

R
+
Q2

R2

))
= m− Q2

2R
.

Since the perturbation to the Schwarzschild metric is at order r−2, we still have mADM = m.

Writing this in terms of the outermost horizon area A+ = 4πR2
+ and the total charge Q gives

mADM (Reissner�Nordström) =

√
A+

16π
+Q2

√
π

A+
.

We see from this example that even in the Reissner-Nordström case, the Hawking mass must strictly

increase as the test surface �ows outwards from the horizon to the asymptotic region, unlike the

uncharged case where the Hawking mass is constant while traversing Schwarzschild space. This

re�ects the scalar curvature term 2
(
|E|2 + |B|2

)
contributed by the electromagnetic �eld. Thus

we must not discard the scalar curvature term in our monotonicity calculation if we wish it to hold

for the charged case.

Theorem 4.2. If (M, g) is an asymptotically �at manifold of ADM mass mADM equipped with a

vector �eld E and a positive real Q such that

Q ≤ 1

4π

ˆ
Σ

〈E, νSr 〉 dA

for any topological 2-sphere Σ containing the outermost horizon and R ≥ 2 |E|2, then

mADM (M) ≥
√
A+

16π
+Q2

√
π

A+

where A+ is the area of any connected component of the outermost horizon of M .

Note. The conditions on E mean physically that there is a total charge of at least Q inside the

horizon, and the scalar curvature condition means that the local energy density is at least that

contributed by the electromagnetic �eld, which is R = 2
(
|E|2 + |B|2

)
in the electrovacuum case.

Proof. Exactly as for the uncharged case, but with a more careful calculation of the evolution of

mH (Nt). We estimate the scalar curvature term using the Cauchy-Shwarz and Hölder inequalities:

ˆ
Nt

RdA ≥ 2

ˆ
Nt

|E|2 dA

≥ 2

ˆ
Nt

〈E, νNt〉
2
dA

≥
2
(´

Nt
〈E, νNt〉 dA

)2

A (Nt)

≥ 2

A (Nt)
(4πQ)

2
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and thus using Theorem 3.13 with r = 0, s→∞ (remembering χ (Nt) ≤ 2) we �nd

mADM ≥ mH (N0) +
1√
16π

ˆ ∞
0

√
A (Nt)

(
1− 1

2
χ (Nt) +

1

16π

ˆ
Nt

2 |D logH|2 + (λ1 − λ2)
2

+RdA

)
dt

≥
√
A+

16π
+

1

(16π)
3/2

ˆ ∞
0

√
A (Nt)

ˆ
Nt

RdAdt

≥
√
A+

16π
+

1

(16π)
3/2

ˆ ∞
0

2√
A (Nt)

(4πQ)
2
dt

≥
√
A+

16π
+

Q2
√
π

2
√
πA+

ˆ ∞
0

e−t/2dt

=

√
A+

16π
+Q2

√
π

A+
.

Bray's proof admits no such simple generalisation. In fact, the Penrose inequality with charge

and disconnected horizon is false - see [15] for a counterexample. Thus the IMCF proof of the

Penrose Inequality still has merits over Bray's approach.

4.3 The Yamabe Invariant of RP3

Another application of the IMCF arises in the study of the Yamabe Invariant, a (smooth) topolo-

gical invariant arising from the study of conformal transformations in di�erential geometry.

Throughout this section, let M be a compact smooth n-manifold, n ≥ 2.

De�nition 4.3. For a Riemannian metric g on M , the Einstein-Hilbert energy E (g) is

E (g) =

´
M
RdV(´

M
dV
)(n−2)/n

where R, dV are the scalar curvature and volume forms induced by the metric g.

De�nition 4.4. The smooth Yamabe invariant or σ-invariant of a smooth manifold M is

σ (M) = sup {Y (g) |g is a metric on M}

where

Y (M, g) = Y (g) = inf
[g]
E

is the conformal Yamabe invariant of the conformal class [g] = {metrics conformal to g}.

An important question is whether or not the in�mum Y (g) is actually attained. A necessary

condition for E (g0) = Y (g0) is that g satis�es the Euler-Lagrange equation for the functional E

(i.e. g0 is a local minimum of E). By de�nition, [g] is the set of metrics g̃ such that g̃ = u2/(n−2)g

for some smooth function u on M . The scalar curvature of g̃ is

R̃ = u−(n+2)/(n−2)L0u (4.2)

where

L0 = Rg − 4
n− 1

n− 2
∆g
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is the conformal Laplacian. In terms of u and the geometry of g, the energy of g̃ is therefore (noting

dVg̃ =
√

det g̃
det gdV = u2n/(n−2) and integrating by parts)

E (g̃) = Eg (u) =

´
uL0u dV(´

u2n/(n−2)dV
)(n−2)/n

=

´ (
uRu− 4n−1

n−2u∆u
)
dV(´

u2n/(n−2)dV
)(n−2)/n

=

´ (
Ru2 + 4n−1

n−2 |∇u|
2
)
dV(´

u2n/(n−2)dV
)(n−2)/n

.

(4.3)

Thus our question is whether or not Eg has a minimum over C∞ (M). The Euler-Lagrange equation

(a necessary condition for a local minimum) of Eg is

L0u = λu(n+2)/(n−2)

where λ = Eg (u) / ‖u‖p−2
Lp ; so if Eg is minimised at g0 = u

2/(n−2)
0 g then (by (4.2)) g0 has constant

scalar curvature. The existence of such a u0 is a known as the Yamabe Problem, conjectured and

thought to be proven by Yamabe [16]; however, his proof had a major �aw. The work of Trudinger,

Aubin and Schoen eventually culminated in a correct proof [17]; so we know that in each conformal

class [g], Y (g) = E (g0) for some g0 with constant scalar curvature.

The supremum σ (M) is de�ned due to the following lemma. The proof involves constructing

a metric conformal to g which looks like g0 over most of Sn in a neighbourhood of a point, and is

very small everywhere else in M .

Lemma 4.5. Y (M, g) ≤ E (g0) where g0 is the standard round metric on Sn.[18]

A good starting point for computing the invariant is the following theorem.

Theorem 4.6. (Obata [18, 19]). If g is Einstein (Rc = kg for some constant k) then Y (g) = E (g).

In the two-dimensional case, the scalar curvature is twice the Gaussian curvature so we have

E (g) =

ˆ
M

2K dA = 4πχ (M)

which is independent of g and therefore σ (M) = 4πχ (M); i.e. the Yamabe invariant reduces to

the well-studied Euler characteristic.

Much more interesting is the three-dimensional case, which is where we will �nd an application

of the IMCF. The starting point is the example S3, where (by Lemma 4.5) the standard round

metric (from the embedding S3 ↪→ R4 with radius 1) achieves the maximum. Since it has constant

scalar curvature 6 and volume 2π2, we see that

σ1 := σ
(
S3
)

=

´
S3 6dV(´
S3 dV

)1/3 = 6
(
2π2
)2/3

.

For general 3-manifolds we have σ (M) ≤ σ1; but �nding exact values is di�cult. The Yamabe

invariant σ
(
RP3

)
was �nally computed by Bray and Neves in 2004 using the weak IMCF of Huisken

and Ilmanen along with the relationship between the conformal Yamabe invariant Y (g) and the

optimal constant for the Gagliardo-Nirenberg-Sobolev inequality.

Theorem 4.7. σ
(
RP3

)
= σ2 := 6π4/3.

Proof. We give a brief sketch; see [18] for the full details (including a more general classi�cation

result).

We have σ
(
RP3

)
≥ σ2 by the theorem of Obata [19]. Thus what needs to be shown is that

Y (g) ≤ σ2 for some g in each conformal class of metrics on RP3.
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Consider a conformal class [g] with Y (g) > 0; then the minimum is attained (E (g0) = Y (g0))

at some metric g0 ∈ [g] of positive constant scalar curvature R. Fix a point p ∈ M ; then there is

a some positive scaling of the fundamental solution Gp of the conformal Laplacian on (M\p, g0)

such that the metric gAF = G4
pg0 is asymptotically �at on M\ {p} (with the asymptotic regime

being x → p). The new metric gAF is in the conformal class [g], and since L0Gp = 0 on M\ {p},
gAF has zero scalar curvature by (4.2). Therefore by (4.3) we have

Y (g0) = Y (gAF ) = inf

{ ´
M

8 |∇u|2 dV(´
M
u6 dV

)1/3 ∣∣∣u ∈ C∞ (M\ {p})

}

where the derivatives and norms are with respect to gAF . If we change the conformal factors to

be H1 with compact support, this ratio (without the factor of 8) is in fact the optimal constant

S (gAF ) in the inequality on (M\ {p} , gAF ); and it can be shown by approximation that the

in�mum is the same for both classes of functions. Thus we have reduced the problem to showing

that S (gAF ) ≤ σ2/8.

In the case where our original conformal class is [g] = [g0] = [gR] with gR being the round

metric on RP3 (the projection of the round metric on S3 down the double covering S3 → RP3,

which exists because the antipodal map is an isometry), the symmetries of gR imply that gAF has

spherical symmetry (i.e. its isometry group has a subgroup isometric to SO (3)). Consider the

lift of gAF to S3. Since it is spherically symmetric, has zero scalar curvature and is geodesically

complete, it must be isometric to some scaling of the Schwarzschild slice
(
MS = R3\B1 (0) , gS

)
;

and therefore
(
RP3, gAF

)
is isometric to the exterior region of MS (with antipodal points on the

horizon ∂B1 (0) identi�ed) [2, 18]. In this case we also have S (gAF ) ≤ σ2/8 by Theorem 4.6.

To prove this inequality for other initial metrics, we will compare back to gR and apply the

IMCF. First, de�ne the function U0 on MS so that gR = U4
0 gS . We know that gR minimises E

over the conformal class and therefore that U0 attains the optimal Sobolev constant of σ2/8; and

U0 also has spherical symmetry. Let Nt be the IMCF starting at the horizon in MS ; then Nt is

just a �ow of concentric spheres, so by the spherical symmetry of U0 we can de�ne f (t) = U0 (Nt).

Now consider the general manifold
(
RP3\ {p} , gAF

)
. One can show that there is an outermost

compact minimal surface; so letting this be the initial condition we �nd (by Theorem 3.12) a weak

IMCF solution u. We will use

U :=

f ◦ u on {u > 0}

f (0) on {u ≤ 0}

as a test function for the Sobolev inequality and compute the resulting ratio using properties of the

IMCF. The numerator of the Sobolev ratio is (by the co-area formula for the slices Nt = ∂ {u < t})
ˆ
M

|∇U |2 dV =

ˆ ∞
0

f ′ (t)
2
ˆ
Nt

H dAdt.

The denominator can estimated using the co-area formula and the dominated convergence theorem

by ˆ
M

|∇U |6 dV ≥
ˆ ∞

0

f (t)
6
A (Nt)

2

(ˆ
Nt

H dA

)−1

dt. (4.4)

By the monotonicity of the Hawking mass and the exponential growth of surface area we have

ˆ
Nt

H2 dA ≤ 16π
(

1− e−t/2
)
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and thus by Hölder's inequality

ˆ
Nt

H dA ≤
√

16πA (N0)
(
et − et/2

)
.

If we substitute this into (4.4) we arrive at an estimate for the Sobolev constant:

S (gAF ) ≤
´
|∇U |2 dV(´
U6dV

)1/3 ≤ (16π)
2/3 ´∞

0
f ′ (t)

√
et − et/2dt(´∞

0
f (t)

6
e2t
(
et − et/2

)−1/2
dt
)1/3

=: C.

Note now that the right hand side makes no reference to the geometry of gAF - it is entirely de�ned

in terms of the function f , which we de�ned from the model case when gAF ' gS . In the model

case, the Hawking mass is constant and all the inequalities above are in fact equalities; so we �nd

C = S (gS) = σ2/8. (Alternatively we �nd f (t) =
(
2et − et/2

)−1/2
from the expanding sphere

solution of the IMCF on MS and compute the integrals.) We therefore have in general

Y (gAF ) = 8S (gAF ) ≤ σ2.
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A Asymptotics

A central concept throughout the paper is that of asymptotic �atness, and many of the calculations

therefore involve taking limits r → ∞. To make these calculations clean, we use the usual big-O

notation for asymptotics. This appendix clearly de�nes this notation and the way we use it in the

multivariable setting.

Assume we have some distinguished coordinate system x1, x2, x3 on M = R3\K where K is

compact. Then

De�nition A.1. The spherical coordinate system associated with
{
x1, x2, x3

}
is the one given by

{r, θ, ϕ} satisfying

x1 = r cosϕ sin θ

x2 = r sinϕ sin θ

x3 = r cos θ;

i.e. the usual spherical polar coordinates if
{
x1, x2, x3

}
are Cartesian coordinates on Euclidean

space.

De�nition A.2. A function f : M → R is O
(
rk
)
as r →∞ if there exists an R > 0 and a C > 0

such that

r > R =⇒ |f (r, θ, ϕ)| < Crk.

We will write this as f ∈ O
(
rk
)
or f = O

(
rk
)
. It is often convenient to use the notation

f = g +O
(
rk
)
to mean f − g ∈ O

(
rk
)
.

In particular, the restricted functions f (r, ·, ·) : ∂Br → R are bounded by Crk for r > R; we

will often use this to estimate integrals
´
∂Br

f dA as r →∞. An important consequence is that in

asymptotically �at coordinates and when the sphere is parametrised with angular coordinates θ, ϕ

we have
˜
f
√
g dθdϕ with

√
g ∈ O

(
r2
)
; so for α < −2 the condition f ∈ O (rα) guarantees the

integral vanishes as r →∞.

For the purpose of computation, all the usual power-series manipulations are valid as long as

we understand the coe�cients as bounded functions of θ, ϕ.
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B First Variation of Area

This equation is central to the geometric analysis of the IMCF.

Proposition B.1. Let M be a Riemannian n-manifold. If Nt = ΦXt N0 ⊂ M is a smooth family

of hypersurfaces satisfying X = vν (i.e. �owing in the normal direction with speed v) then

LXdA = vH dA

where dA is the area form induced by g on Nt, ν is the unit normal to Nt and H is the mean

curvature scalar of Nt.

Proof. The �ow gives us natural coordinates
{
x1, . . . , xn−1, xn = t

}
so that Nτ = {τ = t}. Then

we have X = ∂t and

dA =
√

det gNdx ∧ dy

and therefore by Cartan's magic formula

LXdA = (di∂t + i∂td)
(√

det gNdx ∧ dy
)

= i∂t

(
∂
√

det gN
∂t

dt ∧ dx ∧ dy
)

=
1

2
√

det gN

∂ det gN
∂t

dx ∧ dy

=
1

2 det gN

∂ det gN
∂t

dA.

By the formula for the derivative of the determinant, this is

LXdA =
1

2
tr

(
g−1
N

∂gN
∂t

)
dA.

=
1

2

n−1∑
i,j=1

gjigij,tdA

We now compute the derivatives of the tangential metric components: for i, j ≤ n− 1,

gij,t = ∇t 〈∂i, ∂j〉

= v∇ν 〈∂i, ∂j〉

= v (〈∇ν∂i, ∂j〉+ 〈∂i,∇ν∂j〉)

= v (〈[ν, ∂i] +∇iν, ∂j〉+ 〈∂i, [ν, ∂j ] +∇jν〉) .

Since [ν, ∂i] =
[

1
v∂t, ∂i

]
= − (∂iv) ∂t and 〈∂t, ∂i〉 = 0, the two Lie bracket terms disappear; and

recognising the second fundamental form in the leftover terms we see gij,t = 2vAij . Therefore

LXdA =
1

2
gij2vAijdA = Hv dA.
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C Computation

Prop 2.6

The following Mathematica code computes the Hawking mass of coordinate spheres in an asymp-

totically (and conformally to 1st order in r−1) �at manifold.

(* Define Coordinate Transformation + Compute Jacobian *)

X = { r Cos[phi] Sin[theta],

r Sin[phi] Sin[theta], r Cos[theta] };

J = Transpose[D[X, #] & /@ {r, phi , theta }];

(* Define metric in asymptotically Schwarzschild coordinates *)

h = Table[O[r, Infinity ]^2 , {i, 1, 3}, {j, 1, 3}];

g = (1 + m/(2 r))^4 IdentityMatrix [3] + h;

(* Compute metric in new coordinates *)

gS = Transpose[J].g.J // FullSimplify;

(* Compute induced metric on coordinate sphere *)

gS2 = Take[gS , {2, 3}, {2, 3}];

(* Compute area of coordinate sphere *)

A = Integrate[

Sqrt[Det[gS2]], {theta , 0, Pi}, {phi , 0, 2 Pi}];

(* Construct unit normal n to coordinate sphere *)

proj[v_ , u_] := u (gS.u.v)/(gS.u.u);

pr = {1, 0, 0}; pphi = {0, 1, 0}; ptheta = {0, 0, 1};

uphi = pphi;

utheta = ptheta - proj[ptheta , uphi];

ur = pr - proj[pr, uphi] - proj[pr, utheta ];

n = ur/Sqrt[gS.ur.ur];

(* Derivatives of metric *)

dg[i_ , j_ , k_] :=

Sum[Inverse[J][[l, k]] D[

g[[i, j]], {r, phi , theta }[[l]]], {l, 1, 3}];

(* Christoffel Symbols *)

G = Table[Sum[

1/2 Inverse[g][[i, l]] (-dg[j, k, l] + dg[k, l, j] +

dg[l, j, k]), {l, 1, 3}], {i, 1, 3}, {j, 1, 3}, {k, 1, 3}]; //

FullSimplify;

(* Compute mean curvature from covariant derivative *)

H = Sum[D[(J.n)[[i]], {r, phi , theta }[[j]]] Inverse[

J][[j, i]], {i, 1, 3}, {j, 1, 3}] +

Tr[G.(J.n)] // FullSimplify;

(* Compute Hawking mass of coordinate sphere *)

mH = Sqrt[A/(16 Pi)] (1 - (1/(16 Pi)) Integrate[

H^2 Sqrt[Det[gS2]], {theta , 0, Pi}, {phi , 0,

2 Pi}]) // FullSimplify

The result is mH (r) = m+O (1/r), allowing us to conclude the result of Proposition 2.6.
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Example 3.8

The following Mathematica code computes the jump radius rjump and produces the �gures seen in

Example 3.8.

f[a_, x_] := Cosh[a x]/a;

g[r_, x_] := Sqrt[r^2 - (x - 1)^2];

sol[r_] := FindRoot [{f[a, x] - g[r, x],

D[f[a, x], x] - D[g[r, x], x]}, {x, 0.5}, {a, 1}];

catarea[a_ , x0_] :=

2 \[Pi] NIntegrate[f[a, x] Sqrt[1 + D[f[a, x], x]^2], {x, 0, x0}];

caparea[r_ , x0_] :=

2 \[Pi] NIntegrate[

g[r, x] Sqrt[1 + D[g[r, x], x]^2], {x, 1 - r, x0}];

areagain[r_] :=

catarea[a /. sol[r], x /. sol[r]] - caparea[r, x /. sol[r]];

solfn[r_, a_, x0_] := If[Abs[#] < x0, f[a, #], g[r, #]] &;

splot[r_, a_, x0_] :=

ParametricPlot3D [{x, Cos[y] h[Abs[x]], Sin[y] h[Abs[x]]} /.

h -> solfn[r, a, x0], {x, -2, 2}, {y, 0, 2 \[Pi]}];

splot2[r_ , a_ , x0_] :=

Plot[solfn[r, a, x0][Abs[x]], {x, -2, 2},

PlotRange -> {{-2, 2}, {0, 1}}];

solplot[r_] := splot[r, a /. sol[r], x /. sol[r]];

solplot2[r_] := splot2[r, a /. sol[r], x /. sol[r]];

rjump = r /. FindRoot[areagain[N[r]], {r, 0.86}, Evaluated -> False]

aminfn[r_] :=

If[r >= rjump , solfn[r, a /. sol[r], x /. sol[r]], (g[r, #] &)];

aminplot2[r_] :=

Plot[aminfn[r][Abs[x]], {x, -2, 2}, PlotRange -> {{-2, 2}, {0, 1}}];

Plot[areagain[r], {r, 0.85, 1}, AxesLabel -> {"r", "\[ Delta]A"}]

rvals = Append[Table[Exp[t], {t, -0.55, -0.15, 0.05}] , rjump];

Show[Table[aminplot2[r], {r, rvals }]]

solplot[rjump]
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D Geometric Measure Theory

While we omit many details, here are some basic de�nitions and results from measure theory that

are integral to the variational formulation of the IMCF. See e.g. [13] for a detailed treatment.

De�nition D.1. The d-dimensional Hausdor� outer measure of a set E ⊂M (M a metric space)

is

Hd (E) := lim
δ→0

inf

{
αd
∑
n∈N

rdn

∣∣∣ {B (pn, rn < δ)}n∈N covers E

}
where αd is the usual measure (area, volume, etc.) of a d-dimensional sphere. (N.B. Some

authors instead use αd = 1 or αd = 2d; our de�nition corresponds to the classical notions of area

and volume.) A set E is Hd-measurable (and we call Hd (E) the Hausdor� measure of E) if for

every set F we have

Hd (F ) = Hd (E ∩ F ) +Hd (Ec ∩ F ) .

When restricted to the σ-algebra of measurable sets, the Hausdor� measure is countably additive.

The n-dimensional Hausdor� measure on an n-manifold agrees with the Lebesgue measure. In the

setting of 3-manifolds, we refer to V = H3 as volume and A = H2 as surface area. Integrals of

functions are taken with respect to dV unless otherwise noted.

De�nition D.2. A function u : Ω → R has bounded variation in Ω (u ∈ BV (Ω)) if its total

variation

‖∇u‖ =

ˆ
Ω

|∇u| := sup

{ˆ
Ω

udivX
∣∣∣X ∈ C1

c (Ω, TΩ) , ‖|X|‖∞ ≤ 1

}
is �nite. The∇u appearing here is the vector measure corresponding to the distributional derivative

of u, and |∇u| is de�ned by the above supremum. A function u : Ω → R has locally bounded

variation (u ∈ BVloc (Ω)) if u ∈ BV (U) for each precompact open U ⊂ Ω.

-

De�nition D.3. The perimeter (or often surface area) of a set E in Ω is the total variation of its

characteristic function in Ω:

P (E,Ω) =

ˆ
Ω

|∇χE | .

E is said to have locally �nite perimeter if χE ∈ BVloc. The outwards unit normal to ∂E is the

vector �eld ν such that ∇χE = − |∇χE | ν; i.e. the ν making the divergence theorem

ˆ
Ω

X · ν |∇χE | =
ˆ
E

divX

hold.

De�nition D.4. The reduced boundary ∂∗E of a set of locally �nite perimeter E is the set of

points x ∈ ∂E such that ∣∣∣∣∣limε→0

´
Bε(x)

∇χE´
Bε(x)

|∇χE |

∣∣∣∣∣ = 1

The restriction of the Hausdor� measure Hn−1 to ∂∗E is exactly |∇χE |; so Hn−1 (∂∗E) = P (E,Ω)

for E ⊂⊂ Ω.

De�nition D.5. If N is a C1 hypersurface of M , then we say H ∈ L1
loc (N) is the weak mean

curvature of N if
d

dt
|t=0A

(
ΦXt (N) ∩W

)
=

ˆ
N∩W

H 〈ν,X〉 dA
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for every X ∈ C∞c (M,TM) and every precompact open W ⊃ suppX.

Now that we have these de�nitions, we brie�y review some useful results.

Theorem D.6. Co-area Formula. For any u ∈ C0,1
loc (Ω) and v ∈ L1 (Ω) we have

ˆ
Ω

v |∇u| dHn =

ˆ
R

ˆ
u−1(t)

v dHn−1 dt.

Note that the integral is well-de�ned because locally Lipschitz functions are almost everywhere

di�erentiable.

Proposition D.7. Lower Semi-Continuity of Surface Area. If En, E are sets of �nite

perimeter with Hn (En∆E)→ 0 or equivalently χEn
L1

→ χE as n→∞; then we have

Hn−1 (∂∗E) ≤ lim inf
n→∞

Hn−1 (∂∗En) .

Proposition D.8. (Semi-)Continuity properties of Weak Mean Curvature. Under local

C1 convergence of C1 hypersurfaces with |H| uniformly bounded,
´
H 〈ν,X〉 is continuous for any

X, ess sup |H| is lower semicontinuous and
´
φH2 is lower semicontinuous for smooth φ.
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E Notation

X ⊂⊂ Y X is precompact and X̄ ⊂ Int (Y )

〈·, ·〉 g (·, ·)
|X|

√
|g (X,X)|

X[ 1-form dual to vector �eld X with respect to g

θ] vector �eld dual to 1-form θ with respect to g

∇ (possibly distributional) covariant derivative

∆ the covariant Laplacian

∂ boundary or reduced boundary

∂∗ reduced boundary

χE indicator function of the set E

ν unit normal vector to a hypersurface

A second fundamental form of a hypersurface

A,dA H2, dH2 when working in 3 dimensions

A (Ω) a function space over Ω; i.e. vector subspace of RΩ (typically with some norm)

Aloc (Ω) functions Ω→ R that have restrictions in A (U) for every U ⊂⊂ Ω

BV (Ω) functions of bounded variation; i.e. with distributional derivatives in D′

Ck (Ω) k-times continuously di�erentiable functions Ω→ R
Ck,α (Ω) functions Ω→ R with derivatives up to order k being Hölder continuous with exponent α

C∞ (Ω) smooth functions on Ω

C∞c (Ω) or D (Ω) smooth functions with supp ⊂⊂ Ω

D′ (Ω) distributions on Ω; real-valued Radon measures on Ω; the continuous dual of D (Ω)

D covariant derivative on a submanifold

iXω interior product of form ω with vector �eld X; i.e. partial application ω (X, ·, · · · )
ΦXt the �ow of a vector �eld X with parameter t; i.e. the solution to d

dtΦ
X
t (p) = X

(
ΦXt p

)
g Riemannian metric

G Einstein tensor (Rc− 1
2Rg)

Hk (Ω) W k,2 (Ω)

Hn n-dimensional Hausdor� measure

k second fundamental form of Lorentzian embedding M ↪→ L

Lp (Ω) functions on Ω with |f |p integrable
λ1, λ2 principal curvatures of N ; i.e. eigenvalues of A

L Lorentzian 4-manifold

LX Lie derivative in the direction X

M Riemannian 3-manifold

µ 4-dimensional hypervolume measure

N 2-dimensional hypersurface of M

P (E,Ω) perimeter of E in Ω (Hn−1 (∂∗E) when E ⊂⊂ Ω ⊂ Rn)
R scalar curvature of M

Rc Ricci curvature of M

Rm, Rijkl Riemannian curvature of M

T stress-energy tensor

V ,dV H3, dH3 when working in 3 dimensions

W k,p (Ω) (Sobolev space) Lp functions with distributional derivatives up to order k in Lp

A\B set di�erence {x ∈ A|x /∈ B}
Z(µν) symmetrisation in indices µ,ν: 1

2 (Zµν + Zνµ) (Z any tensor)

Z[µν] antisymmetrisation in indices µ,ν: 1
2 (Zµν − Zνµ)
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